Unitas.ru

Сантехника водопровод
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Механизмы подъема. Преобразователь частоты серии EI-9011 в частотно регулируемом приводе

Механизмы подъема. Преобразователь частоты серии EI-9011 в частотно регулируемом приводе

Механизмы подъема груза с применением электропривода устанавливаются на всех грузоподъемных машинах. Их общая конструкция характерна не только для кранов и лифтов, но и для машин специального назначения, в которых направление вектора приложения силы от действия нагрузки может совпадать с направлением вращения ротора электродвигателя.

Самый простой вариант механизма — грузовая лебедка. Это машина для подъема грузов с помощью каната, навиваемого на барабан с зацепом в виде крюка.

1.jpg

Основная кинематическая схема механизма подъема

Электропривод механизма подъема

Самый распространенный электродвигатель для механизма подъема — это асинхронный электродвигатель с короткозамкнутым ротором. При простоте управления (прямой пуск) у него есть существенные недостатки:

  • большие пусковые токи,
  • большие динамические нагрузки при запуске.

Устранить их в какой-то мере позволяет применение электродвигателя с фазным ротором. Но появляется новый недостаток — громоздкое силовое коммутационное оборудование.

Наиболее высоких эксплуатационных показателей позволяет достичь применение частотно-регулируемого привода, а именно:

  • снизить пусковые токи до уровня номинального,
  • снизить динамические нагрузки до уровня расчетных,
  • плавно регулировать скорости вращения в широком диапазоне.

Применение ПЧ серии EI-9011 для управления механизмом подъема

При выборе преобразователя частоты «Веспер» прежде всего надо учитывать тип редуктора механизма подъема. Различают 2 основных типа:

  • цилиндрический,
  • червячный.

Различие этих редукторов в том, что цилиндрический — двухсторонний, т. е. крутящий момент передается как от входного вала к выходному, так и наоборот — от выходного вала к входному; а червячный — односторонний. Последний устанавливают реже — из-за низкого КПД и повышенного износа.

В механизмах подъема с червячным редуктором возможно применение любого преобразователя частоты «Веспер» серий EI, E3, E4, E5. Но применение ЧРП в таком механизме мы рассматривать не будем — из-за отсутствия особенностей его работы.

Для механизмов подъема с цилиндрическими редукторами рекомендуется применять преобразователи частоты серии EI-9011, благодаря наличию у них:

  1. Мощного центрального процессора, который позволяет создать программное обеспечение для векторного режима с высокими точностными характеристиками и широким функционалом.
  2. Двух векторных режимов: в разомкнутой системе и с датчиком обратной связи по скорости.
  3. Широкого диапазона регулировки скорости: 1/100 в обычном векторном режиме и 1/1000 — в векторном с обратной связью.
  4. Векторного режима с обратной связью, который обеспечивает М=100% практически при нулевой скорости вращения двигателя.

Ранее приведенная кинематическая схема механизма подъема оптимальна для управления от преобразователя частоты EI-9011. В составе механизма есть тормозное устройство (3), конструктивно не связанное ни с электродвигателем, ни с редуктором. Для него доступно независимое управление электрическим сигналом.

С преобразователем частоты структура будет иметь следующий вид:

2.jpg

Рассмотрим простейшую схему управления приводом грузовой лебедки с электродвигателем небольшой мощности — до 8 кВт:

3.jpg

Для такого применения достаточно, как правило, режима работы ПЧ «Векторный в разомкнутой системе».

Почему именно он? Потому что позволяет управлять вращением двигателя в более широком диапазоне скоростей, чем скалярный режим. Это особенно важно на нижней границе диапазона, где требуется обеспечить номинальный момент на валу двигателя при возможной минимальной скорости вращения. Чем меньше значение выходной частоты ПЧ, при которой двигатель начинает вращение и имеет номинальную нагрузку на своем валу, тем меньше динамическая (ударная) нагрузка на все части механизма подъема.

Программирование ПЧ серии EI-9011 для управления механизмом подъема

Для программирования ПЧ необходимо подключить его к сети силового электропитания 3Ф, 380 В, 50 Гц. Соответственно, и электродвигатель, с которым предполагается работа, тоже следует подключить к ПЧ. Программирование производится с собственного пульта управления.

Читайте так же:
Пластиковая рамка вокруг выключателя

Векторный режим работы предусматривает обязательную автонастройку ПЧ с применяемым электродвигателем. Проводить ее следует при каждой замене двигателя.

Важное примечание: в процессе автонастройки ПЧ определяет ряд параметров двигателя во время вращения последнего. Поэтому для корректного определения параметров вал двигателя должен быть свободным — на нем не должно быть лишней присоединенной массы.

После подачи напряжения питания в основном меню ПО надо выбрать раздел «Инициализация». В этом разделе:

  • Выполнить инициализацию (возврат значений всех параметров к заводским).
  • Выбрать режим работы — «Векторный в разомкнутой системе».
  • Определить уровень доступа к параметрам — «Расширенный».

Выбор других разделом меню и параметров производится аналогично.

Программирование можно выполнить и с помощью пульта управления ПЧ. Вся информация выводится на дисплей пульта в доступном виде и с комментариями на русском языке.

Следующий шаг: в основном меню ПО надо выбрать раздел «Автонастройка». В этом разделе следует выполнить все указания по вводу значений параметров двигателя и запустить процесс автонастройки. Если после его завершения на дисплее пульта управления нет сообщений об ошибках, следует перейти к программированию.

Далее в основном меню ПО надо выбрать раздел «Программирование». Перечень его параметров определяется следующими условиями:

  • Управление работой ПЧ (человек или АСУ).
  • Управление работой механизма со стороны ПЧ.

Для рассматриваемого варианта применения алгоритм работы и управления будет следующим:

При подаче команды движения вверх или вниз ПЧ выдает команду на отключение тормоза (размораживает механизм), а затем начинает вращение двигателя с минимальной частоты. В процессе работы лебедки можно регулировать скорость вращения и, соответственно, линейную скорость перемещения зацепа с грузом, выбирая оптимальную.

Вернемся к электрической схеме внешних подключений к ПЧ.

Клеммы 1 и 2 имеют фиксированные функции пуска в прямом и обратном направлении вращения соответственно.

После подачи питания на ПЧ вид управления — дистанционный: световые индикаторы УПР и РЕГ светятся. За это состояние отвечают параметры b1-02 и b1-01 соответственно, т.е. ПЧ уже настроен на внешние команды «ПУСК» и «УПРАВЛЕНИЕ СКОРОСТЬЮ».

Управление тормозом лебедки будет выполнять многофункциональный дискретный выход: клеммы 9-10. К началу вращения, после подачи команды «ПУСК», контакты внутреннего реле замыкают клеммы 9-10 и обеспечивают подачу сигнала управления тормозной системой лебедки. Такой режим обеспечивает функция дискретного выхода «Во время вращения».

В сочетании с режимом торможения постоянным током при пуске можно создать момент на валу двигателя при минимальной выходной частоте, при котором не будет срыва управления, и динамические нагрузки будут минимальными.

Процесс торможения постоянным током при пуске определяется параметрами:

  • В2-01 — частота включения постоянного тока торможения.
  • В2-02 — уровень тока торможения.
  • В2-03 — время торможения постоянным током при пуске.

При подаче команды «ПУСК» включается торможение двигателя постоянным током, но тормоз еще не отключен. В течение времени торможения происходит предварительное намагничивание двигателя, и к моменту отключения тормоза на его валу уже создан начальный момент. Это поясняют следующие временные диаграммы:

4.jpg

При опускании груза направление вращения вала двигателя совпадает с направлением вектора силы, которая определяется массой груза, и эта сила пытается увеличить скорость вращения вала двигателя. Таким образом, двигатель переходит в генераторный режим работы.

5.jpgЭДС, которая вырабатывается двигателем в таком режиме, поступает в ПЧ, повышая напряжение на звене постоянного тока. Чтобы исключить аварийные остановки привода из-за перегрузки по напряжению, предусмотрен тормозной резистор. Он подключается к звену постоянного тока, когда напряжение ЗПТ достигает критического значения и рассеивает в тепло излишек электроэнергии.

Читайте так же:
Сколько стоят автоматические выключатели

Обобщая вышесказанное, можно составить минимальный список параметров с конкретными значениями для программирования режимов работы и управления ЧРП грузовой лебедки:

  • А1-03=2220,
  • А1-02=2,
  • А1-01=4,
  • В2-01=0,5,
  • В2-02=50.0,
  • В2-03=1.0,
  • Н2-01=37.

Рассмотренный пример ЧРП грузовой лебедки с применением ПЧ «Веспер» серии EI-9011 можно использовать как базовый — для проектирования более сложных механизмов подъема, с улучшенными эксплуатационными характеристиками.

Составление сметы

В смету включаются все виды работ, которые потребуются для полной сборки и установки мостового крана, в т.ч. работы по монтажу, проверке или нивелировке крановых путей, установке дополнительных конструкций (монтажных мачт и пр.), непосредственная сборка и установка грузоподъемного оборудования, проверка качества монтажа и ходовые испытания.

На величину сметы оказывает прямое влияние грузоподъемность крана, его конструкция и размеры, выбранная технология монтажа, состав парка спецтехники у заказчика, особенности несущих конструкций здания, конкретные условия монтажной площадки и другие моменты.

Классификация мостовых кранов

В соответствии с требованиями ГОСТ все представленные на рынке модели делят на устройства общего и узкопрофильного назначения. Специализированные механизмы отличаются тем, что в их комплектацию включены захваты узкой направленности. К примеру, при работе с металлоломом используются магнитные мостовые краны, с сыпучими материалами — грейферы. Общепромышленные модели оснащаются крюком с автоматической защёлкой, что позволяет использовать их для перемещения грузов на стропилах.

ГОСТ 27584-88 Краны мостовые и козловые электрические. Общие технические условия

Отдельные виды мостовых кранов разрабатываются для эксплуатации в определённых отраслях производства с учётом особенностей поставленных задач, условий работы. Такую технику выпускают, к примеру, для металлургических предприятий. Они отличаются способностью выдерживать длительную эксплуатацию в условиях воздействия агрессивных сред, высоких температур, оснащаются специальными захватами (ковочными, литейными, для работы со слитками).

Однобалочный мостовой кран

Также бывают однобалочные мостовые краны и двухбалочные. Если мост состоит из одной балки, грузоподъёмное оборудование отличается сравнительно небольшим весом. Но это отрицательно сказывается на их грузоподъёмности: она не превысит 10 т. При этом возможна комплектация дополнительной консольной тележкой, что расширит сферу применения оборудования.

Двухбалочные модели допускает использование не только стандартной грузовой тележки, но и дополнительных навесных механизмов. За счёт этого увеличивается сфера использования техники, расширяются возможности управления за счёт применения дистанционных пультов. Это мощные мостовые краны, активно задействованные на производственных предприятиях различных отраслей промышленности.

По конструкции

В зависимости от способа установки металлоконструкций на крановом пути различают подвесные и опорные модификации оборудования. В первом случае крепление выполняется на нижний, а во втором случае – на верхний горизонтальный пояс пролётной балки.

Двухбалочный мостовой кран

Важным преимуществом подвесных механизмов является сравнительно невысокая стоимость и простота монтажных работ. Но грузоподъёмность таких механизмов не превышает 8 т. Конструкции отличаются небольшой высотностью, что позволяет увеличить рабочую зону в сравнении с опорными аналогами, имеющими большую производительность (до 500 т).

По способу перемещения

Мостовые модели стандартного исполнения перемещаются в ходе выполнения работ по параллельным путям. Но конструкция мостовых кранов позволяет использовать их в модификации, учитывающей особенности технологического процесса, характер размещения производственного оборудования. Для решения специализированных задач возможна установка грузоподъёмной техники со следующими принципами перемещения.

  • Радиальным. Механизм подъёма на балке сможет вращаться вокруг площадки, которая жёстко закреплена в центре цеха, по кольцевому рельсу.
  • Поворотным. Работы в отличие от предыдущего варианта могут выполняться в любой точке, ограничения в передвижениях связаны только с протяжённостью проложенных подкрановых путей.
  • Хордовым с меньшей площадью обслуживания в сравнении с радиальным. Из-за особенностей конструкции радиус вращения при этом останется неизменным.
  • Кольцевым с передвижением механизмов по рельсам разного диаметра. Конструкция в этом варианте несколько усложняется из-за необходимости использования ходовых колёс, отличающихся между собой по размеру во избежание проскальзывания.
Читайте так же:
Розетки выключатели розовый цвет

Кольцевой мостовой кран

По грузоподъемности

Грузоподъемность мостовых кранов – одна из основных характеристик техники. Наибольшее распространение получили модели, у которых этот параметр составляет 1‑50 т. В большинстве случаев для промышленного использования этого достаточно. Для выполнения узкопрофильных задач задействуют технику грузоподъёмностью до 500 т (к примеру, для монтажа турбины гидроэлектростанции).

По типу привода

Выпускаются мостовые модели с ручным и электроприводом. В первом случае в качестве основного рабочего механизма для передвижения применяются тали червячного типа. Это оптимальный вариант при необходимости регулярной работы с небольшими грузами в ходе сборочных или ремонтных работ на машиностроительных предприятиях.

Мостовой кран с ручным приводом

Электрический привод для мостового крана используется чаще, так как позволяет успешно работать с грузами высокой тоннажности без физических усилий со стороны оператора. Для передвижения конструкций используется до 4 электродвигателей (зависимости от требований к производительности). Для передачи вращения на колёса задействуют только редуктор или его комбинацию с трансмиссией.

Фазные аппараты

Строение асинхронного двигателя с фазным ротором

В мостовых кранах, как правило, стоят асинхронные двигатели с фазным ротором, к примеру, МТН. Такие моторы обеспечивают плавный пуск, а также позволяют регулировать скорость, несмотря на значительную нагрузку на валу. Их устанавливают на оборудовании среднего, тяжелого и очень тяжелого режимов работы. Преимущество МТН перед двигателями постоянного тока заключается в более низкой цене и простоте обслуживания. Если сравнить массы этих двигателей на мостовых кранах, то будет видно, что фазники в несколько раз легче.

Если общие затраты на работу короткозамкнутых асинхронных машин принять равными единице, то для фазных аппаратов они будут равны пяти, а для двигателей постоянного тока – десяти. Это объясняет, почему подавляющее большинство моторов на кранах именно трехфазные.

Структура условного обозначения двигателей типа 4МТН

Для отечественной промышленности выпускаются электродвигатели различной нагревостойкости изоляции, обозначаемой буквой в модели аппарата: МТФ – 155○С, МТН – 180○С.

Электрические машины для мостовых, а также других кранов, серии МТН и МТКН выпускают с частотой вращения 600, 750 и 1 тыс. об/мин. при 50 Гц, а для частоты сети 60 Гц – 720, 900 и 1200 об/мин. Эта серия характеризуется высокой перегрузочной способностью, повышенным пусковым моментом при небольшом токе и быстрым разгоном.

Двигатели МТН имеют повышенную мощность за счет улучшенных характеристик изоляционных материалов, по сравнению с предыдущими моделями подобных электрических машин.

Строение фазного ротора

Фазный ротор имеет три обмотки, уложенные со сдвигом в 120 градусов. Обмотку соединяют только звездой, а ее концы выводят на контактные кольца, изготовленные либо из латуни, либо из стали и качественно изолированные друг от друга, а также от вала, на котором они насажены. При помощи щеточного механизма обмотки ротора подсоединяются к пусковой или пускорегулирующей аппаратуре.

Пусковая аппаратура может представлять из себя мощные резисторы, несколько пускателей, постепенно закорачивающих ротор, и реле времени.

Схема с использованием мощных резисторов, нескольких пускателей, постепенно закорачивающего ротора, и реле времени

Схема с использованием мощных резисторов, нескольких пускателей, постепенно закорачивающего ротора, и реле времени

Подобные схемы успешно работают на мостовых кранах. После пуска двигатель МТН включается на полном значении сопротивлений в цепи ротора. Через определенное время, выставленное на реле времени, когда пусковой ток падает до номинала, включается первый контактор, который как бы «выбрасывает» часть сопротивлений и двигатель получает дополнительный момент, разгоняясь до следующего значения. В каждом отдельном случае количество резисторов и пускателей «выброса» может быть разное.

Читайте так же:
Патроны с акустическим выключателем

Когда включается последний пускатель, МТН выходит на свои полные обороты и работает как асинхронник с короткозамкнутым ротором. Крановые электродвигатели с фазным ротором можно использовать как для кратковременного режима работы, так и для постоянного.

Пониженная скорость

На современных мостовых кранах используется электронная схема, позволяющая получить пониженную, или «ползучую», скорость. Это бывает крайне необходимо в случаях погрузки опасных или негабаритных грузов, а также в случае, когда нужна очень точная погрузка.

Для этой цели используют тиристоры или симисторы. Получая напряжение с фазных колец ротора, схема устанавливает угол открытия тиристора согласно заданного значения. В результате, машинист может регулировать нужную скорость, если такая регулировка выведена в его кабину, либо включать заданное значение.

Схема для понижения скорости

Торможение

Для торможения двигателя на мостовых, и не только, кранах, успешно применяют динамический режим: в обмотку статора, после отключения питания, кратковременно подают постоянное напряжение, имеющее неподвижное магнитное поле. Такой способ позволяет повысить точность остановки механизма.

Схема торможения

Такое напряжение подают либо через гасящий резистор, либо при помощи понижающей схемы. После остановки двигателя его необходимо обесточить.

Как производится проверка контура заземления?

Непрерывный контакт подкранового пути проварен проволокой диаметром 6 кв.мм.

Для того чтоб мостовой кран был допущен к эксплуатации, его должна обследовать специализированная электролаборатория, итогом проверки является такой документ, как протокол контура заземления.

Проверка контура заземления производится по окончании монтажных работ. Когда подъемный механизм установлен и полностью готов к эксплуатации, производится замер контура заземления мостового крана, для осуществления процедуры применяется специальная методика. При введении в эксплуатацию используются нормативы ПУЭ (правила устройства электроустановок). При повторном обследовании, в качестве регламента применяется другой документ – ПТЭЭП – Правила технической эксплуатации электроустановок потребителей.

В пункте 5.4.56 ПУЭ сказано, контур заземления крана должен, выполнен в соответствии с требованиями главы 1.7 ПУЭ, и соответственно иметь сопротивление растекания тока контура заземления не более 4 Ома, при питании 380 Вольт и присоединённых естественных заземлителей.

При данной процедуре применяется методика измерения контура заземления, в ней регламентируются условия проведения испытаний, а также комплекс действие, направленных на то, чтоб измерить все необходимые параметры. В работах используется прибор для измерения контура заземления MRU-101, его показания заносятся в протокол, и по их величине производится определение, соответствует сопротивление контура нормативам или нет. При положительном результате мостовой кран допускается к эксплуатации, если же показатели не дотягивают до нормативных, выдаётся предписание, согласно которому собственник должен провести дополнительные работы по монтажу контура и сделать так, чтоб величина его сопротивления укладывалась в регламент.

Для чего нужна проверка сопротивления?

Вывод стальной полосы 40х4 кв.мм. для соединения подкранового пути с контуром заземления

Для чего же требуется измерять сопротивление контура заземления мостового крана как при вводе в эксплуатацию, так и в процессе его эксплуатации? Ответ прост – для соблюдения требований безопасности. Любая электроустановка, в том числе и мостовой кран, является потенциальным источником опасности, и потому исправная работа контура заземления играет важную роль.

Проверять его показатели требуется и спустя определенное время после начала эксплуатации, так как под действием внешних факторов технические характеристики контура заземления могут измениться, что делает эксплуатацию крана и даже простое нахождение рядом небезопасным для людей.

Особенности и назначение

Под крановыми электродвигателями следует понимать такие электроприводные агрегаты, которые осуществляют перемещение различных механизмов крановых установок. При рассмотрении грузоподъемных кранов, как компонентного механизма, состоящего из различных составных элементов, назначение крановых электрических машин имеет несколько направлений:

  • Перемещение самой крановой установки по рельсам;
  • Перемещение крановых установок в вертикальной плоскости;
  • Поворот крановых элементов;
  • Движение грузоподъемных механизмов для перемещения крюка.
Читайте так же:
Рабочая температура автоматического выключателя abb

Все манипуляции с грузом выполняются за краткосрочный период, поэтому работа кранового электродвигателя должна производиться в повторно-кратковременных режимах, при этом существенно изменяется диапазон частоты вращения. Из-за этого продолжительных усилий им совершать не приходится, но агрегат претерпевает кратковременные нагрузки и воздействия пусковых токов. Помимо стандартных ситуаций обмотки могут подвергаться перегрузкам и перегреву, поэтому приводы механизмов изготавливаются со следующими особенностями:

  • В большинстве случаев это электрические машины закрытого типа, наружный кожух позволяет защищать их от механических воздействий в процессе эксплуатации. Для металлургических агрегатов могут делаться исключения, так как из-за повышенной температуры возникает необходимость вентиляции обмоток.
  • Общепромышленные электродвигатели имеют улучшенную изоляцию по параметрам устойчивости к высоким температурам, как правило, классов F и H. Что позволяет сохранять уровень сопротивления изоляции при ее нагревании.
  • Относительно небольшая инерционность вала, что обеспечивает снижение потерь электрической энергии во время переходных процессов на рабочих частотах.
  • Магнитная система обладает хорошей проводимостью, что создает мощный поток, способный преодолевать серьезные нагрузочные усилия.
  • Допускается высокий уровень перегрузки относительно номинального значения рабочих токов. Коэффициент может достигать от 2 до 5, что считается нормальным режимом для кранового электродвигателя.
  • Большой разброс частот вращения между минимальным и максимальным режимами.

Некоторые требования для крановых электродвигателей могут упраздняться в виду особенностей рабочих режимов и техпроцессов. А некоторые виды специализации будут продиктованы типом и конструкцией мотора.

Особенности работы двухбалочного моста

Краны мостовые с двумя балками могут комплектоваться несколькими подъемными устройствами и тележками. Если они имеют равную грузоподъемность, то управление ими проводится синхронно. Если величина грузоподъемности разная, тогда одно из них считается основным, а другое вспомогательным и управление осуществляется последовательно.

Кран мостовой двухбалочный опорный служит для работы в помещениях с большими пролетами и является более мощным в сравнении с однобалочным. Подъемная машина с ручным управлением грузоподъемностью от 5 до 20 т применяется в цехах, имеющиех пролет от 8 до 17 м.

Конструкция двубалочного крана

Кран мостовой электрический двухбалочный опорный может поднимать грузы от 5 до 350 т с пролетом цеха от 10,5 до 32 м.

Двухбалочные агрегаты выгодно отличаются рядом показателей:

  • надежность и прочность благодаря конструкции из двух балок;
  • для работы с негабаритным грузом есть возможность усилить механизм дополнительными тележками;
  • комфортное и несложное управление;
  • простота в ремонте;
  • большой по габаритам выбор модели позволяет выбрать устройство под любое помещение;
  • устойчивость к любым погодным условиям, может работать при температуре ниже -40°С;
  • возможность менять положение кабины управления;
  • возможность дополнять необходимым грузоподъемным оборудованием;
  • отличается плавным ходом и встроенным тормозом механизма перемещения.

Среди двухбалочных машин существуют агрегаты, рассчитанные на поднятие небольших тяжестей. К ним относится кран, предназначенный для работы с грузами, равными 1-5 т. Кран опорный 5 т можно встретить в закрытых помещениях. У него небольшие габариты, и он управляется оператором из кабины.

К популярной модели, такой, как опорный 5т, относится мост, имеющих конструкцию из 2 балок, который предназначен для работы с тяжестями не более 10 т. Его отличие от других подобных кранов заключается в том, что ГОСТ разрешает дополнять агрегат оборудованием для подъема – траверсой, грейфером, магнитом. Такой агрегат применяют для установки на опорные краны, имеющие большую грузоподъемность.

Благодаря таким качествам, как надежность, универсальность и простота в управлении, краны мостовые нашли широкое применение в народном хозяйстве.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector