Unitas.ru

Сантехника водопровод
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Мощные сверхяркие светодиоды; особенности монтажа, питания, конструкции

Мощные сверхяркие светодиоды — особенности монтажа, питания, конструкции

Осветительными приборами, где в качестве источников света используются сверхяркие светодиоды, уже никого не удивишь. Спрос на такие устройства неизменно растет, это напрямую связано с низким энергопотреблением этих приборов. Учитывая, что на освещение тратится около 25-35% потребляемой электроэнергии, экономия будет весьма ощутимой.

Различные виды сверхярких светодиодных источников освещения

Различные виды сверхярких светодиодных источников освещения

Но учитывая относительно высокую стоимость сверхярких светодиодов, в силу их конструктивных особенностей, говорить о полном переходе на этот тип освещения еще не своевременно. По мнению специалистов, этот процесс займет от 5 до 10 лет, именно столько понадобится на отладку и внедрение новых технологий.

Типы драйверов светодиодных ламп

Linear

Linear, или просто линейный драйвер, является самым простым и дешевым драйвером. На его плате присутствуют только самые необходимые элементы. Основная его функция – преобразование переменного тока в постоянный, он не защищает светодиоды от перепадов напряжения в сети. Чаще всего этот тип драйвера используется в лампах, в которых недостаточно места для размещения более сложных типов драйверов и в маломощных лампах. Например, Linear драйвер часто используют в филаментных лампах.

Linear драйвер – это плата с электронными компонентами, которая преобразовывает переменный ток в постоянный.

Constant Linear драйвер.

Linear IC

Linear IC драйвер (Integrated Circuit — интегральная микросхема) отличается наличием простой IC микросхемы. Такой драйвер защищает лампу от перепадов напряжения в узком диапазоне, но не от перепадов силы тока и всё ещё является бюджетным решением для LED лампы. Linear IC драйвера используются во всех типах светодиодных ламп и светильников.

Linear IC драйвер – это плата с электронными компонентами, преобразовывающая переменный ток в постоянный и содержащая микросхему стабилизирующую напряжение.

Читайте так же:
Ток потребления видеокамеры с ик подсветкой

DoB Linear IC драйвер.

IC

Самый сложный – это IC драйвер . В нём больше всего компонентов что делает его более массивным, но и более надёжным в работе. Наличие IC микросхемы позволяет драйверу контролировать не только поступающее на светодиоды напряжение, но и силу тока. Высокочастотный EMC-фильтр устраняет помехи, создающиеся при преобразовании тока, а трансформатор (или катушка) снижает входящее напряжение до уровня, необходимого для стабильной работы светодиодов. Такой драйвер обеспечивает продолжительную работу светодиодной лампы и используется во всех видах лампочек и светильников.

IC драйвер – это плата с электронными компонентами, которая преобразует переменный ток в постоянный и содержит микросхему, стабилизирующую входящее напряжение и силу тока.

Constant IC драйвер с компонентами, размещёнными на одной стороне платы.

Электронные компоненты IC драйвера могут быть расположены как на одной стороне платы, так и на обеих. Размещение на обеих сторонах обеспечивает лучшее охлаждение компонентов и увеличивает срок их службы.

Constant IC драйвер с компонентами, размещёнными на разных сторонах платы.

Стабилизация напряжения и Стабилитроны.

Выходное напряжение обычного, нестабилизированного источника постоянного электрического тока подвержено колебаниям, из- за изменений напряжения на его входе. Рисунок. При подключении различных потребителей потребляющих разный ток напряжение так же меняется – возрастает при меньшей нагрузке, падает при большей. Для нормальной работы электронных устройств необходимо это напряжение стабилизировать, сделав его величину независимой от вышеупомянутых факторов. Стабилитроны это полупроводниковые диоды, использующиеся для стабилизации напряжения в различных источниках питания. В отличии от обычных диодов работают при обратном включении, в режиме пробоя. Это не наносит им вреда, если не превышается предел рассеивающей мощности, величина которого является производной, от падения напряжения на переходе и тока через него протекающего.

Читайте так же:
Dhx 2c уменьшить ток подсветки

 Схема параметрического стабилизатора.

Итак, важнейшие параметры стабилитрона — это напряжение стабилизации и максимальный рабочий ток. Рабочий ток стабилитрона, ограничивается с помощью последовательно включенного резистора.

Светодиод в импульсном режиме

В статье "ИК светодиод в предельных режимах работы" описана работа конкретной модели светодиода. Но все светодиоды способны работать в импульсном режиме. В связи с тем что статья вызвала Ваш интерес, который по не вполне понятным причинам замкнулся на описанном ИК светодиоде АЛ106, я решил написать эту статью расширив ее на применение современных мощных светодиодов.

Области применения современных мощных светодиодов

Светодиоды большой мощности выпускаются в нескольких спектральных диапазонах со все более широкой номенклатуре мощности. Они все больше применяются в нашей жизни, от различных сигнальных устройств (в том числе и в автотехнике), технических подсветок до местного освещения и освещения открытых пространств.

В этих случаях условия применения полностью соответствуют рекомендациям производителей.

Для их питания применяются специальные источники питания (драйверы), которые позволяют преобразовать напряжение питающей сети переменного тока в низкое напряжения постоянного тока.

Импульсный режим режим работы мощных светодиодов

Для некоторых применений требуется использование светодиодов в импульсном режиме. Это:

  • Стробоскопы,
  • Датчики охранных систем,
  • Специальные осветители,
  • Импульсных осветителях (вспышках).

Импульсный режим (1, 2), позволяет выделить необходимый импульсный сигнал на фоне внешних засветок. Кроме того импульсный режим позволяет светодиоду выдать большую световую мощность или световой поток, чем в непрерывном режиме при той же мощностью тепловыделения.

  1. Импульсные режимы работы источников света применяются в стробоскопических системах для подсветки при съемках и наблюдении быстрых циклических процессов.
  2. В охранных системах, для увеличения их помехозащищенности в условиях внешних засветок и увеличения дальности работы.
  3. В специальных осветителях для увеличения световой мощность на объекте наблюдаемом с помощью оптико-электронных устройств и их освещения синхронного с частотой работы съемочного оборудования (в том числе и ИК мощных осветителей).
  4. В импульсных осветителях для фотосъемки (фото вспышках) для получения многократного превышения световой мощности на снимаемом удаленном объекте.
Читайте так же:
Электрический ток в осветительной системе

( В фотовспышках на светодиодах работающих в импульсном режиме возможно применение применение оптического формирование светового потока на удаленном объекте )

Особенности работы светодиода в импульсном режиме

В связи с тем, что наибольшее тепловыделение на любом коммутирующем электронном приборе работающем в импульсном режиме происходит на фронтах питающего тока, для заметного выигрыша при переходе в этот режим необходимо максимально снижать время переключения.

Не все светодиоды удовлетворяют этому требованию, прежде всего потому что применяемое параллельное их соединение приводит к суммированию их и так не малой емкости. А для питания устройств с собственной большой емкостью необходимо применять специальные схемы, способные работать на высокие емкости нагрузки . Поэтому выбирая светодиод для эксперимента с повышенным током питания в импульсном режиме необходимо проверить время переключения.

При большом времени переключения падает КПД системы СД + ключ управления (может достигать 50%), получаем дополнительное тепловыделение на управляющем ключе.

для надежной работы светодиода в импульсном режиме должно выполняться соотношение :
P ср/ Q < P и
импульсная мощность не должна превышать допустимую среднюю для данного светодиода, умноженную на скважность импульсов.
Или
для одиночного импульса
температура перехода светодиода (к окончанию импульса тока) не должна превышать предельную, указанную для данной модели в его документации.

Применение мощного светодиода KPXX-080-5 в импульсном режиме

Рассмотрим применение мощного светодиода KPXX-080-5 (5Вт) в импульсном режиме. В паспортных характеристиках указывается, что данный светодиод работает в импульсном режиме при импульсном прямом токе 2000 мА и скважности 1/10 на частота 1 кГц. Его характеристики:

Абсолютные максимальные значения. Таблица 1.

ПараметрМаксимальное значение
Постоянный прямой ток1500 мА
Импульсный прямой ток
(Скважность Q = 1/10, частота 1 кГц)
2000 мА
Среднее значение прямого тока1500 мА
Чувствительность к электростатическому разряду±16000 В
Температура p-n перехода135°С
Температура алюминиевой печатной платы105°С
Диапазон рабочих температур-40°С / +100°С
Тепловыделение Вт< 6,8
Читайте так же:
Розетка кабельная технические характеристики

Электрические характеристики (IF=1500 мА, Tj=25°C). Таблица 2.

ЦветПрямое напряжение
(В)
Динамическое сопротивление (Ом)Температурный коэффициент VF (мВ/°С)Тепловое сопротивление переход-корпус
(°С/Вт)
Световой поток
(Лм)
Доминирующая длина волны (нм) / Цветовая температура (К)
Мин.Тип.Макс.
Белый3.23.84.51.0-2103005500K
Белый теплый3.23.84.51.0-2102803300K
Синий3.23.84.51.0-21068468

Как было написано выше, одним из ограничений рабочего тока светодиода является ограничение его мощности тепловыделения на уровне — P ср < P и* Q , что приводит к превышению допустимой температуры перехода. Для данного светодиода в связи с его большим тепловым сопротивлением (10°С/Вт) и одновременного с ростом тока — ростом напряжения на светодиоде предельная мощность достигается уже при токе 2 А. Прирост светового потока при этом токе может достигать 30%. Но экспериментальная оптимизация режима (отбор экземпляра, подбор максимального тока при соблюдении указанных выше ограничений, усиление охлаждения с помощью дополнительного теплоотвода) может позволить поднять рабочий ток до 3А и соответственно световой поток в 2 раза.

Можно предположить, что в режиме одиночного импульса (фото-вспышка) световой поток может достигать 600 — 1000 Лм, а при принятии оговоренных выше дополнительных мер возможно и до 3000 Лм.

Предельные характеристики мощных светодиодов на начало 2010 года

Не вдаваясь в конкретные конструкции светодиодов существующих в настоящее время можно отметить:

ПараметрТип светодиодаВеличина
Тепловое сопротивлениеSST-800,5 — 0,64 °С/Вт
МощностьARPL — 30W30 W
Световой потокSST-80до 2250 Лм
ARPL — 30Wдо 1100 Лм
СветоотдачаSST-80до 100 Лм/Вт
ARPL — 30Wдо 36 Лм/Вт
Напряжение питанияARPL — 30Wдо 24 Вт
Читайте так же:
Arduino выключатель света 220

На рисунке 1 схематически изображена конструкция светодиодов SST-80 :

Необходимой принадлежностью мощных светодиодов является теплоотвод, поскольку тепловыделение достигает 40 Вт на кристалл (светодиод).

Другие характеристики светодиода приведены на рис. 2 — 5.

Заключение

Главным недостатком светодиодов является достаточно высокое падение напряжения на светодиоде, которое определяется физикой генерации света в p-n переходе любого светодиода. Для видимого света это напряжение составляет (для одного светодиода) около 3,2 — 3,8 В, и с ростом тока растет (см. рис. 3.). Это определяет высокое тепловыделение на светодиоде. Это с ростом мощности светодиода приведет к увеличению размера светильника.

Например — при мощности тепловыделения 10 Вт для отвода выделяемого тепла требуется порядка 200 см 2 площади теплоотвода, при естественном охлаждении.

Применение низкого напряжения и достаточно большого тока для питания мощного светодиода требует применение специального источника питания который еще увеличивает размеры осветительного устройства с применением мощного светодиода и одновременно снижает его КПД. И увеличивает тепловыделение.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector