Unitas.ru

Сантехника водопровод
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Испытание вводов масляных выключателей

Испытание вводов масляных выключателей

Он необходим для прерывания нагрузок в обычных и экстренных режимах. За счет конструкции с наполнением он способен разрывать цепь при коротком замыкании. В повседневной обстановке предназначен для перенаправления энергетических потоков. Широко используется в распределительных устройствах и трансформаторах мощностью 110 кВт.

Гашение дуги происходит в результате закипания жидкой среды в момент разрыва контактов и прохождения электрического разряда. При этом происходит интенсивное движение наполнителя, сокращающее время протекания аварийных токов.

Испытание машин постоянного тока

Испытание машин постоянного тока

Согласно требованиям СНиП, ПУЭ все электрические машины перед вводом в эксплуатацию должны пройти проверку на соответствие техническим условиям. Объем работ отличается в зависимости от характеристик оборудования: мощности, напряжения, состояния и назначения. Крупные машины испытываются в два этапа.

Во время испытания измеряется сопротивление изоляции обмоток, сопротивление обмоток постоянному току, обмотки испытываются повышенным напряжением промышленной частоты, проверяются системы охлаждения и смазки.

Обмотки проверяются на отсутствие обрыва, щетки на нейтрали и правильность чередования полюсов, измеряются воздушные зазоры.

Определение возможности включения без сушки машин постоянного тока

Возможность включения машины без сушки производится в соответствии с указаниями завода-изготовителя.

Измерение сопротивления изоляции

При измерении сопротивления мегаомметром значения должны соответствовать нормам и должны быть не менее 1 МОмкВ, но не менее 0,5 МОмкВ. Проверяется сопротивление изоляции каждой обмотки по отношению к заземленному корпусу и между отдельными обмотками.

Сопротивление изоляции бандажей

Измерение производится относительно корпуса и удерживаемых ими обмоток. Измеренное значение сопротивления изоляции должно быть не менее 0,5 Мом.

Испытание изоляции повышенным напряжением промышленной частоты

В соответствии с ПУЭ измерение сопротивления обмоток статора и ротора постоянному току у электродвигателей переменного тока производят в машинах на напряжение 2 кВ и выше и в машинах 300 кВт и более на все напряжения. В электродвигателях переменного тока мощностью 300 кВт и более проверяют сопротивление обмоток статора и ротора. У машин постоянного тока мощностью 200 кВт и возбудителях синхронных генераторов и компенсаторов проверяют сопротивление обмотки возбуждения и обмотки якоря. Измерения выполняют одинарным или двойным мостом постоянного тока или методом амперметра — вольтметра.

Измерение сопротивления постоянному току:

  • обмоток возбуждения. Значения сопротивления постоянному току по отдельным фазам не должны отличаться друг от друга и заводских данных более чем на ±2 %, а по отдельным параллельным ветвям — более чем на 5 %. Испытание обмоток повышенным напряжением промышленной частоты производят для проверки электрической прочности изоляции и приведены в ПУЭ.
  • обмотки якоря. Сопротивления должны отличаться не более чем на 10% за исключением случаев, когда колебания обусловлены схемой соединения обмоток;
  • реостатов и пускорегулировочных резисторов. Измеряется общее сопротивление, проверяется целость отпаек. Допускается отличие от данных завода-изготовителя не более чем на 10%.
Читайте так же:
Что такое электрически выключатель для тока

Проверке подвергаются машины собранные и просушенные на месте установки, находящиеся в неподвижном положении в отключенном состоянии. Перед испытанием проверяют сопротивление изоляции, уточняя коэффициент абсорбции. Затем машину очищают и продувают сухим и чистым сжатым воздухом.

Когда испытания повышенным напряжением закончены обмотку следует разрядить, соединив ее с корпусом машины, и проверить сопротивление мегаомметром.

Машина проходит испытание, если за 1 минуту не произойдет пробоя или частичного нарушения изоляции. Результаты испытаний и измерений машин перед пуском оформляют, согласно СНиП, соответствующими протоколами и актами.

Снятие характеристики холостого хода и испытание витковой изоляции

Подъем напряжения производится:

  • для генераторов постоянного тока до 130% номинального напряжения;
  • для возбудителей — до наибольшего (потолочного) или установленного заводом-изготовителем напряжения.

Напряжение между соседними коллекторными пластинами должно быть не выше 24 В. Продолжительность испытания — 3 мин. Допускается отклонение в пределах погрешности.

Снятие нагрузочной характеристики

Производится для возбудителей при нагрузке до значения не ниже номинального тока возбуждения генератора. Отклонение от заводской характеристики не нормируется.

Измерение воздушных зазоров между полюсами

Машины мощностью 200 кВт и более могут иметь зазор не более 10% среднего размера зазора, при измерении диаметрально противоположных точках. Не более 5% для возбудителей турбогенераторов.

Испытание на холостом ходу и под нагрузкой

Определяется предел регулирования частоты вращения или напряжения, который должен соответствовать заводским и проектным данным.

Нормы, программы и методы испытаний

Объем и нормы испытаний электрооборудования также зависят от вида испытаний:

  • Контрольные и типовые испытания регулируются ГОСТами и варьируются в зависимости от конкретного вида оборудования.
  • Приемо-сдаточные испытания нужно проводить в соответствии с установленными «Правилами устройства электроустановок».
  • Эксплуатационные испытания нормируются двумя документами: «Нормы испытаний электрооборудования» и «Правила технической эксплуатации электроустановок потребителей».

При проведении эксплуатационных и приемо-сдаточных испытаний также учитывают нормативы инструкций ведомства/завода. Чтобы не упустить важные детали проверки и выполнить испытания электрооборудования корректно, лучше поручить этот процесс профессионалам с должной специальной подготовкой.

Необходимость непрерывного измерения частичных разрядов

Современные способы электрического тестирования не требуют привлечения сторонних специалистов и лабораторного оборудования. Анализ проводится с помощью датчиков, подсоединенных к электронному блоку. Процесс непрерывного измерения частичных разрядов эффективен по нескольким причинам:

  • полученные данные предоставляются в удобной для анализа форме;
  • процесс проведения измерений автоматизирован и не требует участия специалиста;
  • оборудование способно своевременно предупредить о возникновении проблем, увеличении мощности и числа ЧР.

особенности частичных разрядов
Емкостные датчики

измерение частичных разрядов
Установленные емкостные датчики

Непрерывное измерение частичных разрядов показало экономическую эффективность на тысячах машин. Такой мониторинг позволяет своевременно принять корректирующие меры и избежать дорогостоящей перемотки статора после пробоя.

Измерение тангенса угла диэлектрических потерь.

Производится у вводов и проходных изоляторов с внутренней основной маслобарьерной. бумажно-масляной и бакелитовой изоляцией. Тангенс угла диэлектрических потерь вводов и проходных изоляторов не должен превышать значений, указанных в таблице 2.

Читайте так же:
Сравнить характеристики автоматические выключатели

Таблица 1. Схемы определения сопротивления изоляции вводов

Схема замещения (рис. 2)

Измеряемый участок изоляции ввода

Соединение зажимов мегаомметра (рис. 1)

У вводов и проходных изоляторов, имеющих специальный вывод к потенциометрическому устройству (ПИН), производится измерение тангенса угла диэлектрических потерь основной изоляции и изоляции измерительного конденсатора. Одновременно производится и измерение емкости.

Браковочные нормы по тангенсу угла диэлектрических потерь для изоляции измерительного конденсатора те же, что и для основной изоляции.

У вводов, имеющих измерительный вывод от обкладки последних слоев изоляции (для измерения tgδ), рекомендуется измерять тангенс угла диэлектрических потерь этой изоляции (при напряжении 3 кВ).

Схемы замещения изоляции маслонаполненных вводов

Рис. 2. Схемы замещения изоляции маслонаполненных вводов

Таблица 2. Наибольший допустимый тангенс угла диэлектрических потерь основной изоляции и изоляции измерительного конденсатора вводов и проходных изоляторов при температуре +20°С

Наименование объекта испытния и вид основной изоляции

Тангенс угла диэлектрических потерь, % при номинальном напряжении, кВ

Маслонаполненные вводы и

проходные изоляторы с изоляцией:

Вводы и проходные изоляторы с

бакелитовой изоляцией (в том

числе масло наполненные)

* У трехзажимных вводов помимо измерения основной изоляции должен производиться и контроль изоляции отводов от регулировочной обмотки. Тангенс угла диэлектрических потерь изоляции отводов должен быть не более 2,5% .

Для оценки состояния последних слоев бумажно-масляной изоляции вводов и проходных изоляторов можно ориентироваться на средние опытные значения тангенса угла диэлектрических потерь: для вводов 110 — 115 кВ — 3 %, для вводов 220 кВ — 2 % и для вводов 330 — 500 кВ — предельные значения tgδ, принятые для основной изоляции.

Измерение тангенса угла диэлектрических потерь и емкости производится у вводов с бумажно-масляной и маслобарьерной изоляцией в соответствии с указаниями, приведенными испытаниях изоляции электрооборудования повышенным напряжением.

В эксплуатации применяются методы измерения тангенса угла диэлектрических потерь вводов под нагрузкой с использованием специальных схем измерений.

При измерениях tgδ оценка состояния вводов должна производиться не только по его абсолютному значению, но и с учетом характера изменения тангенса угла диэлек трических потерь и емкости вводов по сравнению с ранее измеренными значениями.

Рекомендуемые схемы измерения тангенса угла диэлектрических потерь маслонаполненных вводов различного конструктивного исполнения приведены на рис. 3 и табл. 3.

При измерении tgδ вводов силовых трансформаторов, не имеющих вывода от последней заземленной обкладки, должны быть приняты меры к устранению влияния на результаты измерения обмоток силового трансформатора, т.к. в этом случае емкости ввода и обмоток силового трансформатора оказываются включенным параллельно, а ре зультаты измерения величины tgδ не характеризуют истинное состояние ввода.

Таблица 3. Схемы определения tgδ изоляции маслонаполненных вводов

Емкостная схема замещения

Измеряемый участок изоляции ввода

Вид мостовой схемы

Соединение зажимов измерительного моста

Вывод Вп заземлен. Схема мажет быть применена для измерения tgδ вводов, установленных у масленных выключетелях.

Читайте так же:
Чертеж масляного выключателя 110 кв

быть применена для измерения вводов, установленных на силовых трансформато-рах, с учетом погрешности, вносимой емкость С2

С токоведущим стержнем

С токоведущим стержнем

С токоведущим стержнем

Вывод ВИЗМ разземлен

С токоведущим стержнем

Вывод ВИЗМ разземлен

С токоведущим стержнем

При применении вводов, установленных на словых тренсформато-рах, должны быть приняты меры, исключающие влияние обмоток

Кроме измерения tgδ и емкости основной изоляции бумажно-масляных вводов обязательно производится оценка состояния изоляции измерительного конденсатора С2 (при наличии у ввода устройства ПИН — емкость между измерительным выводом и со единительной втулкой) и изоляции последней обкладки C3 относительно соединительной втулки ввода. Необходимость в оценке состояния наружных слоев изоляции основана на соображении. что в случае увлажнения изоляционного материала остова ввода наружные слои его в первую очередь воспримут влагу и это позволит по тангенсу угла ди электрических потерь и динамике его изменения получить характеристику процессов, происходящих в изоляции ввода.

Тангенс угла диэлектрических потерь основной изоляции (емкость С1) измеряется по нормальной схеме моста при испытательном напряжении 10 кВ, у измерительного конденсатора С2 — по перевернутой схеме моста при испытательном напряжении 5-10 кВ, у C3 — по перевернутой схеме при испытательном напряжении 5 кВ. В случаях, когда имеется возможность изолировать от земли соединительную втулку ввода, tgδ измерительного конденсатора С2 или C3 измеряется по нормальной схеме моста. При измерении емкости С2 или C3 по нормальной схеме (рис. 3a) заземление снимается с измерительного вывода и соединительной втулки, при измерении по перевернутой схеме (рис. 3б) — только с измерительного вывода, соединительная втулка при этом должна быть заземлена.

Принципиальные схемы измерения диэлектрических потерь изоляции вводов

Рис. 3. Принципиальные схемы измерения диэлектрических потерь изоляции вводов.

а — нормальная схема для измерения емкости

С; б — перевернутая схема для измерения емкости С2 или СЗ (см. рис. 2); ИТ — испытательный трансформатор; К — эталонный конденсатор; М — мост переменного тока; E испытуемый ввод

Конструкция маслонаполненных вводов с бумажно-масляной изоляцией выполнена таким образом, что, например, у ввода 110 кВ между последней измерительной обкладкой и фланцем положено два-три слоя (0,4 – 0,6 мм) бумаги, а остальная часть (1011 мм) заполнена маслом. Фактически масляный зазор колеблется в значительных пре делах, а иногда почти отсутствует (в зависимости от плотности намотки бумаги). Поэтому емкость С3, у однотипных вводов, может колебаться в значительных пределах. Поскольку между измерительной конденсаторной обкладкой и фланцем превалирует масло, на величину суммарного тангенса угла диэлектрических потерь будет существенное влияние оказывать состояние масла (увлажнение, окисление и т.п.). При стабильном и малом значении tg6 масла, например, 0,5 % при 20°С увлажнение двух-трек наружных слоев бумаги должно быть значительным, чтобы сказаться на увеличении измеряемого суммарного значения tgδ. Так, при толщине слоя масла 10 — 11 мм суммарное значение tgδ будет больше 2% при тангенсе угла диэлектрических потерь бумаги 20%, а при толщине масляного промежутка 6 мм тангенс угла диэлектрических потерь бумаги должен быть около 10 %, чтобы суммарное значение tgδ было около 2 % .

Читайте так же:
Переходной выключатель с двумя клавишами

При измерении tgδ маслонаполненных вводов, установленных на силовых трансформаторах, обмотки последних должны быть электрически соединены между собой для исключения влияния на результаты измерения индуктивностей обмоток трансформатора.

Измерение изоляции вводов производится при температуре масла не менее +10°С. Для сравнения измеренных значений тангенса угла диэлектрических потерь изоляции со значениями, полученными при предыдущих измерениях или нормированными для температуры +20 °С данными, производится температурный пересчет.

График зависимости тангенса угла диэлектрических потерь вводов с бумажномасляной изоляцией от температуры приведен на рис. 4.

Кривые зависимости тангенса угла диэлектрических потерь вводов с бумажно-масляной изоляцией от температуры построены для основной изоляции вводов (С1), имеющих tgδ при + 20°С равного 1,0 % и 1.5 % и изоляции наружных слоев (С3), имеющих tgδ при + 20°С равного 2,0 % и 3,0 %.

Для пересчета измеренной величины tgδ ввода к температуре + 20°С необходимо: на оси абсисс отложить температуру испытуемого ввода, а по оси ординат – измеренное значение tgδ.

Точка пересечения определеяет фактическое значение тангенса угла диэлеткрическеих потерь при температуре + 20°С.

(Ниже кривой tgδ = 1.5 % при температуре + 20°С находится зона удовлетворительных значений величины тангенса угла диэлетрических потерь).

При изменениях tgδ вводов следует тщательно измерять температуру ввода, так как погрешности в ее измерении могут привести к существенным погрешнастям. Погрешность измерения температур изоляции обусловливается разностью температур в различных точках оборудования. Это прежде всего относится к вводам, установленным на силовых трансформаторах. В последних нижняя часть ввода имеет температуру верх них слоев масла (или близка к ней), а верхняя часть ввода имеет температуру окружающей среды. Поэтому, для маслонаполненных вводов, установленных на силовых трансформаторах, температуру ввода нужно оценивать по следующей формуле

Для маслонаполненных вводов, установленных на масляных выключателях, температура изоляции ввода принимается равной температуре масла выключателя.

Измерение tg6 не рекомендуется производить при температуре ввода в диапазоне 0÷5°С, т.к. при данных температурах наиболее вероятно получение ошибочных результатов из-за отпотевания изоляторов и других факторов.

При крайней необходимости определения tgδ изоляции в зимнее время, следует производить искусственный подогрев изоляции до температуры +5°С.

Логика определения периодичности эксплуатационных испытаний

Как мы видим в ПТЭЭП достаточно много нормативных «пробелов». Было бы куда проще, если бы авторы написали что-то вроде «при каждых эксплуатационных испытаниях проводить такие-то и такие-то измерения с такой-то или такой-то периодичностью в зависимости от . »

Теперь мы приведем наше толкование ПТЭЭП. В соответствии с прил. 3, табл. 28 при межремонтных (М), т.е. эксплуатационных испытаниях нужно проверять сопротивление изоляции, сопротивление петли «фаза-нуль», металлосвязь, а также тестировать УЗО и АВДТ нажатием на кнопку «Т». Для каждого из видов замеров нужно учесть описанные выше требования, причем не только ПТЭЭП, но и других НД, а для этого потребуется определить степень опасности поражения током, находятся ли помещения во взрывоопасной зоне и т.д., и затем выбрать наиболее частый период проведения работ.

Читайте так же:
Привод выключателя вмт 110

Предположим, что у нас помещения без повышенной опасности (сопротивление изоляции по ПТЭЭП — не реже чем раз в 3 года), но во взрывоопасной зоне (сопротивление петли «фаза-нуль» по ПТЭЭП— не реже чем раз в 2 года): тогда логично, что выполнять испытания нужно каждые 2 года или чаще.

Другой пример: кафе на фуд-корте торгового центра, работающее на вынос, т.е. без зала для приёма пищи. Из помещений кухня и подсобка, и оба — с повышенной опасностью. По ПТЭЭП сопротивление изоляции нужно проверять не реже, чем раз в 3 года, но по ПОТ РМ-011-2000 ту же изоляцию нужно проверять каждые 6 месяцев! Получается, что и другие работы нужно проводить раз в полгода.

И второй пример подводит нас к другой дилемме — что делать если два требования НД противоречат друг другу? Какое выполнять, а каким пренебречь?

Примеры расчетов

Для вычисления электрической прочности любого диэлектрика вам необходимо знать условия эксплуатации и геометрические параметры, которые затем сравниваются с табличными данными. Например, если у вас имеется промежуток с воздушным диэлектриком 2 см, к которому будет приложено напряжение в 20 кВ.

Далее вычислим напряженность электромагнитного поля по формуле:

где E – это напряженность поля, U – напряжение в электрической цепи, d – толщина изоляционного слоя.

Пример расчета

Рис. 4. Пример расчета

Тогда напряженность для этого примера составит E = 20/2 = 10 кВ/см. Далее сравниваем полученную величину с электрической прочностью для воздуха из таблицы ниже:

Таблица: Электрическая прочность материалов

Наименование диэлектрикаЭлектрическая прочность, кВ/см
Бумага кабельная сухая60 – 90
Бумага, пропитанная маслом100 – 250
Воздух30
Масло трансформаторное50 – 180
Миканит150 – 300
Мрамор35 – 55
Парафин150 – 300
Электрокартон сухой80 – 100
Электрокартон, пропитанный маслом120 – 170
Слюда мусковитая1200 – 2000
Слюда флогопит600 – 1250
Стекло100 – 400
Фибра40 – 110
Фарфор180 – 250
Шифер15 – 30
Эбонит80 – 100

Из таблицы видим, что пробой воздуха может начаться при 30 кВ/см, в наших расчетах получилась величина 10 кВ/см, значит, изоляция нормально выдержит такой режим работы.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector