Unitas.ru

Сантехника водопровод
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Способы проверки тока утечки

Способы проверки тока утечки

Электрический ток — это упорядоченное движение заряженных частиц в проводнике Ток утечки, не исключение. В штатных условиях, электроток протекает через проводники внутри электроустановки, как и задумано конструктором разработчиком. От остальных токопроводящих элементов конструкции (металлические корпус, рама, каркас), проводники отделены изоляцией, сопротивление которой не позволяет создать электрическую цепь.

Если сопротивление изоляции по какой-то причине уменьшилось (повреждение, влажность, токопроводящая пыль и прочее), на корпусе или иных проводящих элементах установки появляется потенциал (фаза). Сам по себе ток утечки не возникнет, необходимо создать цепь, соединяющую электрический прибор с потенциалом на корпусе с землей или нейтралью.

Что такое ток утечки и откуда он берется

Утечкой называют незапланированный ток, протекающий в электроцепи.

Почему он возникает:

  • неисправна проводка или приборы-потребители, нарушена их нормальная работа;
  • проводка или оборудование смонтированы или настроены неправильно.

Что до первого пункта, возможно, перетерлись провода, вышел из строя один из электроприборов, произошло замыкание оголенной проводки и контактов оборудования жидкостями, проводящими ток (вода, электролит и пр.). Иногда поломка проявляется частично. Например, один из потребителей, допустим сигнализация или магнитола, «тянет» больше тока, чем надо. Внешне это определить удается не всегда.

Во втором случае все объясняется ошибками в монтаже или неправильным пользованием электрическим оборудованием. Один из примеров: водитель отключает зажигание, а обогрев стекол работает дальше, или аудиосистема не переключается в спящий режим, и продолжает получать питание.

Все это и приводит к утечкам. Как результат – АКБ садится в разы быстрее. Порой с такой скоростью, что уже утром водитель не может завести автомобиль. Если машина и дальше будет стоять с такой проблемой, батарея из-за глубокого разряда запросто выйдет из строя.

Поэтому, заметив, что при выключенном двигателе батарея быстро теряет заряд, пора начинать принимать меры. В первую очередь проверяют электрооборудование автомобиля на ток утечки. Решить такую неприятность рекомендуется быстрее. Сложности при пуске мотора – не единственное, с чем может столкнуться водитель. Короткое замыкание, поломка приборов, возгорание – вот одни из последствий.

Читайте так же:
Освещение от 12 вольт постоянного тока 1

Ток утечки в электрических сетях

рис1.jpg

Схематически на рисунке изображен путь, который ток утечки проложил себе по телу человека. Почему ток пошел по телу в данном примере? Потому что сопротивление между корпусом и токоведущими частями установки по какой-то причине уменьшилось. Если корпус установки с поврежденной изоляцией заземлен, то ток утечки двинется к земле, и в месте контакта корпуса с землей из-за разогрева может случиться возгорание.

рис2.jpg

Ток утечки на землю разогреет место крепления провода заземления к корпусу, это и опасно пожаром. Если такое случится например на объекте горнодобывающей промышленности, где высока вероятность обильного выделения горючих взрывоопасных газов или иных легко воспламеняющихся веществ, это может привести к большой трагедии.

Как защитить от поражения электрическим током Вы можете прочитать здесь.

Для сетей с глухозаземленной нейтралью вышеописанная проблема, к сожалению, типична. Но есть и другая не менее опасная возможность. Для трехфазных сетей с изолированной нейтралью характерна утечка тока между фазами по земле через изоляторы, корпус, опоры ЛЭП, в случае если повреждена изоляция хотя бы одной из фаз.

Сопротивление параллельно соединенных изоляторов и опор уменьшается пропорционально их количеству, и при поврежденной изоляции шаговое напряжение может превысить безопасное для человека значение. В любом случае, если норма тока утечки превышена, необходимо срочно осуществить поиск источника неисправности и устранить утечку.

Итак, величина тока утечки связана с сопротивлением изоляции проводников, которое может быть как очень большим, так и малым при нарушенной изоляции. Так или иначе, через любую изоляцию всегда протекает хоть и очень мизерный, но реальный ток от токоведущей части установки, находящейся в данный момент под напряжением, к заземлению или к другой фазе.

Безопасное значение тока утечки регламентировано, его можно посмотреть в документации на соответствующее оборудование, но по причине работы устройства в агрессивной внешней среде, изоляция может повредиться, и ток утечки тогда возрастет. Для защиты от неприятных последствий необходимо применять «устройства защиты от токов утечки на землю».

Читайте так же:
Haj 7223pe уменьшить ток подсветки

Другие статьи

Электроустановочные изделия в интерьере: как подобрать ЭУИ под дизайн помещения

Электроустановочные изделия в интерьере: как подобрать ЭУИ под дизайн помещения

Розетки и выключатели в квартире вполне способны не только гармонично вписаться в любой стиль, но и стать неотъемлемой частью интерьера.

Электрощит для квартиры и частного дома: основные отличия

Электрощит для квартиры и частного дома: основные отличия

Электрический щит – это в первую очередь защита жизни и здоровья человека от поражения электрическом током, а во вторую защита имущества в виде не только электроприборов, но и дома, жилья в целом.

Купить розетки и выключатели в квартиру. Какие выбрать?

Купить розетки и выключатели в квартиру. Какие выбрать?

Электроустановочные изделия уже давно стали элементом интерьера.

Уличные светильники: организация освещения в частном доме и на придомовой территории.

Уличные светильники: организация освещения в частном доме и на придомовой территории.

Правильно организованная подсветка загородного дома уличными светильниками должна быть не только функциональной, но и отвечать всем нормам безопасности.

Разводка электрики в деревянном доме

Разводка электрики в деревянном доме

При монтаже проводки в деревянном доме своими руками очень важно соблюсти все меры безопасности и позаботиться о качественных элементах электрооборудования.

Изолирующие материалы и сопротивление изоляции

Применяемые для создания проводной продукции материалы, в том числе изолирующие, не в последнюю очередь зависят от того, для использования в каких условиях и в каких средах изготавливается конкретный вид и марка изделия. К примеру, для изолирования токопроводящих жил в условиях высоких температур больше подходит резина, устойчивая к температурным воздействиям, чем другие материалы типа обычной пластмассы.

Разнообразие кабельной продукции

Разнообразные изолирующие материалы позволяют производить кабели под конкретные нужды потребителя.

Таким образом, изолирование составных элементов кабельной продукции – это конструктивная защита его токопроводящих жил от взаимных и внешних электрических влияний, от появления наводок и утечек до короткого замыкания. Величину этого параметра для каждой жилы и всего сердечника в целом характеризует величина сопротивления постоянному току в цепи между жилой (жилами) и возможным источником влияния, например, землей. Поэтому для определения защищенности, работоспособности кабельной продукции применяется термин «сопротивление изоляции». Для контроля исправности кабельных пар используются такие понятия, как сопротивление изоляции между жилами и металлическим экраном кабеля.

Читайте так же:
Шввп что это кабель или провод

Диэлектрические материалы, используемые в кабелях для создания изоляционных покрытий, с течением времени теряют свои свойства за счет старения. Кроме того, от физического воздействия они могут просто разрушиться. Чтобы определить, изменились ли параметры изоляционного покрытия и в каких пределах, необходима для сравнения некоторая отправная точка – норма на параметр изделия, установленная изготовителем.

Методика измерения сопротивления изоляции низковольтных силовых кабелей.

Что касается измерения изоляции низковольтных силовых кабелей, то методика измерения незначительно отличается от описанной выше.

1. Проверяем отсутствие напряжения на кабеле с помощью защитных средств, предназначенных для работ в электроустановках.

2. С другой стороны кабеля, жилы разводим их на достаточное расстояние друг от друга и оставляем свободными.

3. Размещаем запрещающие и предупреждающие плакаты. Оставляем с другой стороны человека для наблюдения за безопасностью.

4. Измерение сопротивления изоляции низковольтного силового кабеля проводим мегаомметром на 2500 (В) по 1 минуте:

  • между фазными жилами (А-В, В-С, А-С)
  • между фазными жилами и нулем (А-N, В-N, С-N)
  • между фазными жилами и землей (А-РЕ, В-РЕ, С-РЕ), если кабель пятижильный
  • между нулем и землей (N-PE), предварительно отключив ноль от нулевой шинки

Сопротивление изоляции кабеля.

6. Полученные показатели измерений сопротивления изоляции фиксируем в блокноте.

Потери от токов утечки по изоляторам воздушных линий: таблицы норм, от длины

В соответствии с ПУЭ, минимальная длина пути тока утечки по изоляторам нормируется в зависимости от степени загрязненности атмосферы (СЗА). Установлено семь уровней СЗА: к районам с первым уровнем СЗА отнесены леса, тундра, болота, луга с незасоленными почвами, не попадающие в зону влияния промышленных и природных источников загрязнения; к районам со вторым уровнем СЗА – районы со слабозасоленными почвами и сельскохозяйственные районы, в которых применяются химические удобрения и химическая обработка посевов; к районам с третьим – седьмым уровнями СЗА – районы с промышленными источниками загрязнения различной интенсивности, зависящей от расстояния от источника, характера и объемов производства.

Читайте так же:
Схема включения освещения от трех выключателях

Соотношение уровней СЗА может быть охарактеризовано относительными значениями минимальной длины пути тока утечки по гирлянде изоляторов, приведенными в табл. 2.13 (за единицу приняты значения для первого уровня СЗА).

Относительные значения минимальной длины пути тока утечки для различных уровней СЗА

Потери от токов утечки по изоляторам воздушных линий: таблицы норм, от длины

В соответствии с данными табл. 2.13 при увеличении уровня СЗА должно быть соответственно увеличено число изоляторов в гирлянде. Их отношение для различных уровней СЗА (табл. 2.14) приблизительно соответствует отношениям табл. 2.13 – для линий напряжением 110 кВ и выше число изоляторов в гирлянде в районе с седьмым уровнем СЗА больше, чем в первом в 2,5 раза, а для линий напряжением 6–35 кВ – в 2 раза. Значения напряжения, приходящегося на один изолятор линий, приведены в табл. 2.15. 86

Среднее число изоляторов на опорах ВЛ при различных уровнях СЗА

Потери от токов утечки по изоляторам воздушных линий: таблицы норм, от длины

В нормальном эксплуатационном режиме по изоляторам течет так называемый фоновый ток утечки. Специфика процесса протекания фонового тока состоит в том, что его увеличение приводит к подсушиванию увлажненной поверхности изоляторов и последующему увеличению их сопротивления, в результате чего ток стабилизируется на определенном уровне. По оценкам специалистов ОАО «НИИПТ», длительный фоновый ток в условиях увлажнения изоляторов колеблется в диапазоне 0,5–1 мА. Эта оценка подтверждается имеющимися исследованиями [3], в которых приведены результаты измерения потерь мощности на гирлянде изоляторов линии 110 кВ для различных видов погоды и степени загрязненности изоляторов в режиме фонового тока (табл. 2.16).

Потери мощности в гирлянде изоляторов линии 110 кВ

Потери от токов утечки по изоляторам воздушных линий: таблицы норм, от длины

Приведенные значения фонового тока справедливы для линий любого напряжения, так как с ростом номинального напряжения количество изоляторов в гирлянде увеличивается практически пропорционально напряжению.

В ПУЭ установлено четыре степени загрязнения (СЗ) изоляторов, обусловленного естественными и промышленными источниками загрязнения атмосферы. Данные табл. 2.16 могут быть отнесены, соответственно, к 1, 2 и 3 СЗ. По влиянию на токи утечки виды погоды могут быть объединены в 3 группы: 1 группа – хорошая погода с влажностью менее 90 %, сухой снег, изморозь, гололед; 2 группа – дождь, мокрый снег, роса и хорошая погода с влажностью 90 % и более; 3 группа – туман. Преобразованные в соответствии с этим данные табл. 16 представлены в табл. 2.17.

Читайте так же:
Сеть постоянного тока светодиоды

Потери мощности в гирлянде изоляторов линии 110 кВ, приведенные к расчетным условиям

Потери от токов утечки по изоляторам воздушных линий: таблицы норм, от длины

Потери от токов утечки по изоляторам воздушных линий: таблицы норм, от длины

Как было отмечено выше, фоновый ток утечки является саморегулирующимся, поэтому его значение не зависит от напряжения 88 линии, а потери мощности на линии любого напряжения могут быть определены по формуле, кВт/км:

Используя данные о среднем числе опор на 1 км линий напряжением 6–20 кВ – 13 шт.; 35 кВ – 8 шт.; 60 кВ – 6 шт.; 110 – 4 шт.; 154 кВ – 3,3 шт.; 220–750 кВ – 2,5 шт., получим удельные потери мощности, приведенные в табл. 2.18.

Удельные потери мощности от токов утечки по изоляторам воздушных линий

Потери от токов утечки по изоляторам воздушных линий: таблицы норм, от длины

Потери от токов утечки по изоляторам воздушных линий: таблицы норм, от длины

Подавляющее большинство (92 %) ВЛ в России проходит по территориям с первой СЗ, около 6 % – второй и порядка 2 % – третьей. Протяженность ВЛ, эксплуатируемых в условиях четвертой СЗ, пренебрежимо мала. Поэтому в практических расчетах потерь мощности от токов утечки по сетевой организации в целом могут использоваться обобщенные значения (без районирования территории по СЗ), полученные на основании приведенных цифр по формуле ∆Р = 0,92 ∆Р1 + 0,06 ∆Р2 + 0,02 ∆Р3 , где 1, 2, 3 – СЗ изоляторов. Обобщенные данные приведены в последних строках табл. 2.18 для каждой группы видов погоды.

Потери электроэнергии от токов утечки определяют на основе данных, приведенных в табл. 2.18, и продолжительности видов погоды в течение расчетного периода. При отсутствии последних годовые потери электроэнергии могут быть определены по табл. 2.19 в зависимости от расположения линии в одном из указанных выше регионов.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector