Unitas.ru

Сантехника водопровод
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Напряженность электрического тока в диэлектрике

Напряженность электрического тока в диэлектрике

Определения и исследование электрической прочности композиционных(слоистых) диэлектриков при разной форме электродов на переменном токе промышленной частоты.

Общие сведения

В литературе приводятся различные механизмы пробоя твердых диэлектриков, но при пробое твердых диэлектриков. Наряду с электрическим, тепловым и электрохимическим пробоем возможны также ионизационный, электромеханический и электротермический механизмы пробоя. В чистом виде при пробое ни один из механизмов не встречался.

Электрический пробой – разрешение диэлектрика, обусловленное ударной ионизацией электронами или разрушение связей между атомами, ионами или молекулами. Происходит за время (10^<-5>-10^<-8>)с.

Тепловой пробой – разрушение диэлектрика за счет прогрессирующего локального энерговыделения при протекании тока в среде.

Ионизационный пробой можно наблюдать в полимерных диэлектриках, содержащих газовые поры, в которых развиваются в так называемые частичные разряды. В результате элктронно-ионной бомбардировке стенок пор и действия оксидов азота и озона полимер изменяет химический состав и механически разрушается.

Электротермический пробой характерен для хрупких диэлектриков и пористых керамик. Он возникает в результате механического разрушения из-за развития микротрещин под действием разрядов в газовых включениях, которые образуют перегретые области диэлектрика.

Электромеханический пробой – механическое разрушение полимера при высоком напряжении в результате того, что полимер находится в высокоэластичном состоянии. Причиной является уменьшение толщины диэлектрика из-за электростатического притяжения электродов под действием высокого напряжения.

Электромеханический пробой – механическое разрушение полимера при высоком напряжении в результате того, что полимер находится в высокоэластичном состоянии. Причиной является уменьшение толщины диэлектрика из-за электростатического притяжения электродов под действием высокого напряжения.

Минимальное напряжение (U_<пр>), приложенное к диэлектрику и приводящее к образовании. В нем проводящего канала, называется пробивным напряжением. В зависимости от того, замыкает ли канал оба электрода, пробой может быть полным, неполным или частичным. У твердых диэлектриков возможен также поверхностный пробой, после которого повреждается поверхность материала ,образуя на органических диэлектриках науглероженный след – трекинг.

Отношение импульсного пробивного напряжения к его статическому значению больше единицы и называется коэффициентом импульса.

Зависимость пробивного напряжения от времени приложения напряжения называют кривой жизни электрической изоляции.

Снижение Uпр от времени происходит из-за электрического старения изоляции – необратимых процессов под действием тепла, и электрического поля.

Электрической прочностью называют напряженность электрического поля при пробое изоляции в однородном электрическом поле,

Где (E_<пр>) — электрическая прочность, В/м; (U_<пр>) — пробивное напряжение, В; (d) – толщина диэлектрика, м.

Кроме В/м электрическую прочность часто выражают в мВ/м или кВ/м.

Для экспериментального исследование пробоя используют электроды различной формы, между которыми помещают диэлектрик. Испытания диэлектриков на пробой проводят в однородном и неоднородном электрических полях. В газообразных и жидких диэлектриках однородность поля обеспечивает обычно путем придания поверхности электродов определенной формы, например сферической с радиусом R, значительно превышающим расстояние h между их ближайшими точками или используют электроды Роговского, форма которых соответствует эквипотенциальным поверхностям и обеспечивает однородность электрического поля в средней чести между электродами.

Приблизительно однородное поле в твердых диэлектриках можно получить, если подвергнуть их механической обработке, выдавливая или высверливая в них лунки со сферической поверхностью. Такая обработка может нарушить структуру диэлектрика, поэтому необходимо контролировать качество образцов. Для установления простейших закономерностей и механизма пробоя диэлектриков этот процесс проводят в однородном и неоднородном электрических полях. Для получения неоднородного опля используют электроды типа острие-острие или острие-плоскость. Значение (U_<пр>) в неоднородном поле значительно меньше, чем в однородном из-за повышения среднего значе6ния напряженности поля (E_<ср>= U_ <пр>/h) вблизи электрода с малым радиусом кривизны.

Большое практическое значение имеет задача изучения электрической прочности неоднородных, композиционных и слоистых диэлектриков. К таким диэлектрикам относится кабельная или конденсаторная бумага, пропитанная изоляционным маслом. Электрическая прочность ((Е_<пр>)) нескольких слоев бумаги зависит от микронеоднородностей или точечных повреждений отдельных слоев бумаги, формы электродов, площади их поверхности, а также от плотности бумаги, толщины листа и прослойки масла между листами и их диэлектрических свойств, наличия газовых включений.

Как на постоянном, так и на переменном токе (Е_<пр>) слоистого диэлектрика зависит от распределения напряженности электрического поля по отдельным слоям и от ионизации воздушных включений.

Простейшим слоистым диэлектриком является диэлектрик, состоящий из двух плоскопараллельных слоев с различными электрическими характеристиками. На переменном токе в каждом слое напряженность поля обратно пропорциональна диэлектрической проницаемости (ε), а на постоянном – удельной электрической проводимости (γ) материала слоя. Такое распределения напряженностей определяется формулами:

Поскольку у пропитанной маслом конденсаторной бумаги диэлектрическая проницаемость εб=4,5, а у масла εм=2,2, и, соответственно, удельная электрическая проводимость γб=10-11 (Ом·м)-1, γм=10-9 (Ом·м)-1, то в пакете из пропитанной маслом конденсаторной бумаги на переменном токе напряженность электрического поля больше в слое масла , а на постоянном — в слое бумаге. Поэтому на переменном токе пакет бумаги пробивается при меньших напряжениях, чем на постоянном. Этому способствует также и наличие воздушных включений неизбежных в многослойных диэлектриках, в котором на переменном токе происходит больше разрядов в единицу времени, чем на постоянном токе. Уменьшению электрической прочности при разрядах способствуют и образующиеся при этом озон и окислы азоты, разрушающие бумагу. Этот процесс называют старением.

В зависимости электрической прочности от числа листов пропитанной конденсаторной бумаги наблюдается обычно максимум (для пакета из 6-7 листов), обусловленный наличием слабых в электрическом отношении мест в объеме диэлектрика между электродами и в самом диэлектрике. Рост Епр в таком случае можно связать с уменьшение вероятности совпадения слабых мест при увеличении числа листов в пакете, а уменьшение неоднородности электрического поля и неоднородности слоистого диэлектрика(пакета листов).

Читайте так же:
Эльдорадо переходник для розеток

В системе контроля качества электрической изоляции получило распространение определение среднего значения пробивного напряжения и электрической прочности, а также определение разброса – разности между максимальной и минимальной измеренными величинами. Так как физическое явление пробоя диэлектрика имеет статический характер, то множество измеряемы величин обычно укладывается в нормальное распределение. Для статической оценки совокупности значений Uпр предусматривается расчет следующих величин статических параметров: разброса значений среднего арифметического, дисперсии, среднеквадратического отклонения, коэфицента вариации и асимметрии, эксцесса и контрэкцесса, 90% доверительного интервала. Следует иметь ввиду, что в ряде случаев, для характеристики опытных данных по пробою диэлектриков могут кроме нормального распределения использоваться логарифмически нормальное распределение, распределение Вейбулла и двойное экспоненциальное распределение. Поэтому, прежде всего, необходимо построить гистограмму для большого количества опытов и определить, подчиняется ли нормальному распределению непосредственно контролируемые величины.

Эмпирическую функцию распределения пробивных напряжений диэлектрика, целесообразно условно разбивать на три участка: область наибольшей электрической прочности, характеризующую идеальный диэлектрик и, по-видимому, мало отражающую прочность реальных материалов; область модальных значений, отражающую процессы в реальном диэлектрике с внутренне присущими ему микроскопическими дефектами; область минимальных пробивных значений, соответствующую минимальным вероятностям разрушения изоляции. Сказанное выше показывает, что модели электрической прочности, соответствующие разным частям эмпирической функции распределения, должны быть существенно различными.

Проводники и диэлектрики в электрическом поле

Напомним, что заряженные частицы, которые могут перемещаться в веществе, называют свободными зарядами.

Если поместить проводник в электрическое поле, то находящиеся в нем свободные заряды придут в движение и в проводнике возникнет направленное движение зарядов, то есть электрический ток. Проводники потому так и называются, что они проводят электрический ток.

Лучшие проводники – металлы. Свободными зарядами в металлах являются свободные электроны. Поскольку электроны имеют отрицательный электрический заряд, действующая на них со стороны электрического поля сила направлена противоположно напряженности электрического поля.

За направление электрического тока принимают направление движения положительных зарядов. Поэтому в металлах направление электрического тока противоположно направлению движения свободных зарядов – электронов (рис. 52.1).

Внесем, например, металлический шар в однородное электрическое поле (рис. 52.2).

? 1. В каком направлении будут двигаться при этом свободные электроны? Каким будет направление кратковременного электрического тока?

В результате на одной стороне шара появится избыток электронов, то есть возникнет отрицательный заряд, а на другой его стороне – недостаток электронов, то есть возникнет положительный заряд (рис. 52.3).

? 2. Объясните, почему поле, созданное этими зарядами внутри проводника, направлено противоположно внешнему полю.

Свободные электроны будут двигаться до тех пор, пока на них будет действовать сила со стороны электрического поля.

? 3. Объясните, почему равновесие зарядов в проводнике возможно только при условии, что напряженность электрического поля внутри проводника равна нулю (см. рис. 52.3).

Перераспределение зарядов в проводнике, в результате которого напряженность электрического поля внутри проводника обращается в нуль, называют электростатической индукцией.

При равновесии зарядов напряженность электрического поля внутри проводника равна нулю:

= 0.

Вследствие принципа суперпозиции полей перераспределение зарядов в проводнике изменяет и поле вне проводника. В результате линии напряженности поля вне проводника деформируются.

? 4. Объясните, почему вблизи поверхности проводника линии напряженности электрического поля перпендикулярны поверхности проводника (см. рис. 52.3).
Подсказка. Когда заряды в проводнике находятся в равновесии, на них не действует сила, направленная вдоль поверхности проводника (иначе заряды двигались бы вдоль поверхности проводника).

При равновесии электрических зарядов в проводнике они расположены всегда на поверхности проводника. Причем это справедливо как для незаряженного, так и для заряженного проводника.

Электростатическая защита

При равновесии зарядов напряженность электрического поля равна нулю не только в сплошном изолированном проводнике, но и внутри полого проводника. По этой причине, например, напряженность поля внутри однородно заряженной сферы равна нулю (если внутри сферы нет заряженных тел).

Это свойство проводников в электрическом поле используют для сования электростатической защиты: например, чувствительные к электрическому полю приборы заключат в металлические ящики. Причем я этого не обязательно даже, чтобы стенки ящиков были сплошными: достаточно использовать металлическую сетку, которую называют иногда «сеткой Фарадея» (рис. 52.4).

Электростатическую защиту используют также, чтобы защитить людей, работающих в сильном электрическом поле: в таком случае металлической сеткой окружают пространство, в котором работают люди.

2. Диэлектрики в электрическом поле

Как вы уже знаете, в диэлектриках нет свободных зарядов. Однако это не значит, что в них вообще нет заряженных частиц: ведь в атомах и молекулах диэлектриков, как и любых других веществ, есть положительно заряженные ядра и отрицательно заряженные электроны.

В диэлектриках все электроны сильно связаны со своими атомами, поэтому их называют «связанными электронами». Но под действием внешнего электрического поля молекулы диэлектриков поворачиваются или изменяют форму (деформируются).

Рассмотрим подробнее, как это происходит в диэлектриках разного вида.

Полярные диэлектрики. В молекулах некоторых веществ центры распределения положительных и отрицательных зарядов не совпадают.

Например, в молекуле воды, состоящей из одного атома кислорода и двух атомов водорода, электроны атомов водорода большую часть времени проводят вблизи атома кислорода, в результате чего возле атома кислорода образуется отрицательный полюс, а возле атомов водорода – положительный полюс.

Такие диэлектрики называют полярными, потому что у молекул этих диэлектриков есть два полюса зарядов – положительный и отрицательный (рис. 52.5, а).

Под действием электрического поля молекулы полярных диэлектриков поворачиваются (рис. 52.5, б) и ориентируются вдоль линий напряженности поля (рис. 52.5, в).

Читайте так же:
Правильное подключение розетки фаркопа

Неполярные диэлектрики. Диэлектрики, в молекулах которых центры распределения положительных и отрицательных зарядов совпадают, называют неполярными (рис. 52.6, а). К ним относятся, например, многие газы.

Под действием внешнего электрического поля положительные и отрицательные заряды в молекуле «растаскиваются» в противоположные стороны. В результате центры распределения положительных и отрицательных зарядов перестают совпадать (рис. 52.6, б).

Деформированная молекула с точи зрения распределения зарядов становится подобной полярной молекуле, ориентированной вдоль линий напряженности поля.

Поляризация диэлектриков

Итак, под действием внешнего электрического поля молекулы как полярных, так и неполярных диэлектриков выстраиваются по направлению напряженности внешнего электрического поля.

Это явление называют поляризацией диэлектрика.
В результате поляризации диэлектрика на его поверхности появляются заряды. Как мы уже говорили, эти заряды называют связанными, потому что они обусловлены смещением заряда только внутри молекул (а не во всем образце, как это происходит при движении свободных зарядов в проводнике).

На рисунке 52.7 схематически показано, как в результате поляризации диэлектрика на его поверхности появляются связанные заряды.

Мы видим, что положительные и отрицательные заряды, образовавшиеся вследствие поляризации, внутри диэлектрика компенсируют друг друга. А на поверхности диэлектрика такой компенсации нет: поэтому и возникают поверхностные заряды.

Рассмотрим теперь, как изменяется напряженность электрического поля при внесении в него диэлектрика вследствие появления связанных зарядов.

Заметим, что напряженность поля />поляр, созданного связанными зарядами, направлена противоположно напряженности />внеш внешнего электрического поля (см. рис. 52.7).

Поэтому согласно принципу суперпозиции поле, созданное связанными зарядами, уменьшает напряженность поля внутри диэлектрика (однако не до нуля, как в случае проводника).

вследствие поляризации диэлектрика напряженность электрического поля внутри диэлектрика уменьшается.

Благодаря поляризации незаряженные диэлектрики притягиваются к заряженному телу независимо от знака его заряда.

Дело в том, что электрическое поле вокруг заряженных тел неоднородно: чем ближе к заряженному телу, тем больше напряженность поля.

Когда незаряженный диэлектрик вносят в электрическое поле, на его поверхности появляются связанные заряды противоположных знаков. В результате на разные части диэлектрика со стороны поля действуют противоположно направленные силы (рис. 52.8). И в неоднородном поле «побеждает» та сила, которая действует на заряды, находящиеся в более сильном поле, то есть находящиеся ближе к заряженному телу. Поэтому незаряженное тело притягивается к заряженному.

Теперь становится понятным, почему электрическое отталкивание заметили только через две тысячи лет после того, как обнаружили электрическое притяжение.

Ведь чтобы тела притягивались, достаточно, чтобы заряжено было только одно из них, причем зарядом любого знака. А отталкиваются тела лишь тогда, когда они оба заряжены, причем обязательно одноименно.

? 5. В описанном в предыдущем параграфе опыте по визуализации линий напряженности было использовано то, что состоящие из диэлектрика продолговатые тела ориентируются в электрическом поле вдоль линий напряженности. Объясните, почему это происходит.

Диэлектрическая проницаемость

Величину, которая показывает, во сколько раз уменьшатся напряженность внешнего электрического поля внутри однородного диэлектрика, называют его диэлектрической проницаемостью и обозначают ε.

Значения диэлектрической проницаемости для разных веществ могут очень сильно различаться.

Например, для воздуха ε = 1,0006, то есть очень мало отличается от единицы. Очень близка к единице и диэлектрическая проницаемость других газов. Обусловлено это главным образом малой концентрацией молекул в газах.

Значение диэлектрической проницаемости большинства жидкостей и твердых тел – от нескольких единиц до нескольких десятков. Сравнительно велика диэлектрическая проницаемость воды: ε = 81.

Но есть вещества (сегнетоэлектрики), у которых диэлектрическая проницаемость достигает десятков и сотен тысяч.

? 6. Металлическому шару радиусом 10 см сообщили положительный заряд 20 нКл и после этого поместили в большой сосуд с водой.
а) Сделайте в тетради схематический рисунок, на котором изобразите заряд шара и связанные заряды, возникшие вследствие поляризации воды.
б) Чему будет равна напряженность электрического поля на расстоянии от центра шара, равном 5 см? 15 см? 25 см?

Уменьшение силы взаимодействия заряженных тел, погруженных в диэлектрик. Поскольку взаимодействие заряженных тел осуществляется посредством электрического поля, а поле в диэлектрике уменьшается в ε раз, то в ε раз уменьшается и сила взаимодействия заряженных тел, полностью погруженных в однородный диэлектрик. Например, для очечных зарядов, находящихся в однородном диэлектрике с диэлектрической проницаемостью ε, закон Кулона принимает вид

? 7. Чему равна диэлектрическая проницаемость жидкости, если погруженные в нее небольшие шарики с зарядом 30 нКл каждый взаимодействуют с силой 7,8 мкН? Расстояние между шариками равно 20 см.

Увеличение силы взаимодействия заряженных тел, между которыми помещен диэлектрик. Если расположить диэлектрик между заряженными телами, то силы, действующие на каждое заряженное тело, увеличатся.

? 8. Объясните, почему это происходит.
Подсказка. Воспользуйтесь рисунком 52.9.

Дополнительные вопросы и задания

9. Два одинаковых заряженных шарика подвешены на нитях равной длины в одной точке, При этом нити отклонены от вертикали на некоторый угол. Когда всю эту систему погрузили в жидкий диэлектрик, угол отклонения нитей не изменился.
а) Изобразите на чертеже все силы, действующие на один из шариков до погружения в диэлектрик и после этого.
б) Во сколько раз плотность шариков больше плотности диэлектрика, если его диэлектрическая проницаемость равна 3?

10. Как изменится сила взаимодействия двух заряженных тел, если поместить между ними незаряженный проводник, который не касается этих тел?

Применение

Использование не проводящих электрический ток материалов очень обширно, ведь это один из популярно используемых классов электротехнических компонентов. Стало достаточно ясно, что их можно применять благодаря свойствам в активном и пассивном виде.

Читайте так же:
Пилоты с розетками 8 розеток

 твердые диэлектрики

В пассивном виде свойства диэлектриков используют для применения в электроизоляционном материале.

В активном виде они используются в сегнетоэлектрике, а также в материалах для излучателей лазерной техники.

Виды диэлектрических потерь

В зависимости от электрических свойств различных видов диэлектриков различают следующие виды диэлектрических потерь, сопровождающихся нагревом диэлектрика:

  • ионизационные потери, наблюдаемые в газах;
  • релаксационные потери в жидких (вязких) диэлектриках, в результате релаксационной поляризации;
  • рассеяние в веществах, имеющих дипольную поляризацию;
  • поляризационное рассеивание в веществах, имеющих сквозную электропроводность;
  • высокочастотные резонансные потери;
  • диэлектрические потери, вызванные неоднородностью структуры твердых диэлектриков.

Диэлектрические вещества по-разному ведут себя при различных температурах, при постоянном или переменном токе. Максимумы потерь происходят при достижении определённого порога температуры. Этот порог индивидуален для каждого вещества. Тангенс угла δ зависит также от приложенного напряжения (рис. 4).

Зависимость тангенса угла от напряжения

Рис. 4. Зависимость тангенса угла от напряжения

Что такое полупроводник

Полупроводник проводит электрический ток, но не так как металлы, а при соблюдении определенных условий – сообщении веществу энергии в нужных количествах. Это связано с тем, что свободных носителей (дырок и электронов) зарядов слишком мало или их вовсе нет, но если приложить какое-то количество энергии – они появятся. Энергия может быть различных форм – электрической, тепловой. Также свободные дырки и электроны в полупроводнике могут возникать под воздействием излучений, например в УФ-спектре.

Полупроводники

Где применяются полупроводники? Из них изготавливают транзисторы, тиристоры, диоды, микросхемы, светодиоды и прочее. К таким материалам относят кремний, германий, смеси разных материалов, например арсенид-галия, селен, мышьяк.

Чтобы понять, почему полупроводник проводит электрический ток, но не так как металлы, нужно рассматривать эти материалы с точки зрения зонной теории.

Диэлектрики в электростатическом поле

  • Диэлектрики (изоляторы) — это вещества, в которых практически отсутствуют свободные носители зарядов. Термин «диэлектрик» происходит от греческого слова dia — через, сквозь и английского слова electric — электрический. Этот термин ввел М. Фарадей в 1838 г. для обозначения веществ, в которые проникает электрическое поле.

Резкой границы между проводниками и диэлектриками нет, так как все вещества в той или иной степени способны проводить электрический ток. Но если в веществе свободных зарядов в 10 15 -10 20 раз меньше, чем в металлах, то в таких случаях слабой проводимостью вещества можно пренебречь и считать его идеальным диэлектриком.

Почти все заряженные частицы внутри диэлектрика связаны между собой и не способны передвигаться по объему тела. Они могут только незначительно смещаться относительно своих равновесных положений.

Диэлектриками являются все неионизированные газы, многие чистые жидкости (дистиллированная вода, масла, бензины) и твердые тела (пластмассы, стекла, керамика, кристаллы солей, сухая древесина).

Существуют полярные и неполярные диэлектрики.

Неполярный диэлектрик

Рассмотрим схему простейшего атома – атома водорода (рис. 4).

Положительный заряд атома, заряд его ядра, сосредоточен в центре атома. Вокруг ядра движется электрон со скоростью порядка 10 6 м/с и уже за 10 –9 с успевает совершить миллион оборотов. Поэтому орбиту электрона можно рассматривать как электронное облако, расположенное симметрично относительно ядра. Следовательно, даже за очень малый промежуток времени центр распределения отрицательного заряда приходится на середину атома, т.е. совпадает с положительно заряженным ядром.

  • Диэлектрики, состоящие из атомов и молекул, у которых центры распределения положительных и отрицательных зарядов совпадают, называются неполярными.

Примерами таких веществ являются одноатомные благородные (инертные) газы; газы, состоящие из симметричных двухатомных молекул (кислород, водород, азот); различные органические жидкости (масла, бензины); некоторые твердые тела (пластмассы).

Поместим такой диэлектрик в однородное электростатическое поле с напряженностью (vec E_0) .

На отрицательно и положительно заряженные частицы начинают действовать силы, направленные в противоположные стороны (рис. 5).

В результате молекула растягивается и происходит незначительное смещение центров положительного и отрицательного зарядов. Образуется система двух точечных зарядов q, равных по модулю и противоположных по знаку, находящихся на некотором расстоянии l друг от друга (рис. 6). Такую нейтральную в целом систему зарядов называют электрическим диполем. Электрический диполь создает электрическое поле напряженностью Едi, которая направлена против напряженности внешнего поля Е.

В диэлектрике, состоящем из множества таких диполей, с напряженность Едi, общая напряженность Е становится меньше напряженности внешнего поля Е (рис. 7).

Вследствие смещения зарядов на одной поверхности диэлектрика появляются преимущественно отрицательные заряды диполей, а на другой – положительные (рис. 8). Внутри любого объема диэлектрика суммарный электрический заряд молекул в этом объеме равен нулю.

  • Заряды, которые образуются на поверхности диэлектрика, помещенного в электрическое поле, называются связанными.
  • Смещение связанных положительных и отрицательных зарядов диэлектрика в противоположные стороны под действием приложенного внешнего электростатического поля называют поляризацией.
  • Поляризация диэлектрика, в результате которой происходит смещение электронных оболочек, называется электронной поляризацией.

Электронная поляризация происходит в атомах любого диэлектрика, помещенного в электрическое поле.

Полярный диэлектрик

Многие диэлектрики (H2O, H2S, NO2) образованы из молекул, каждая из которых является электрическим диполем и в отсутствии внешнего электрического поля. Такие молекулы и образованные ими диэлектрики называются полярными.

Например, молекула поваренной соли NaCl. При образовании молекулы единственный валентный электрон натрия захватывается хлором. Оба нейтральных атома превращаются в систему из двух ионов с зарядами противоположных знаков. Центр положительного заряда молекулы приходится на ион натрия (Na), а отрицательного – на ион хлора (Cl) (рис. 9).

При отсутствии внешнего поля молекулярные диполи из-за теплового движения расположены хаотично, поэтому их суммарный дипольный момент равен нулю.

Читайте так же:
Установка розеток под варочную панель

Поместим полярный диэлектрик в однородное электростатическое поле с напряженностью (vec E_0) . Со стороны этого поля на диполь будут действовать две силы, одинаковые по модулю и противоположные по направлению. Эти силы создают вращающий момент, стремящийся повернуть диполь так, чтобы его ось была направлена по линии напряженности поля (рис. 10). Но этому препятствует тепловое движение. В результате молекула поворачивается лишь частично (рис. 11).

Поворот электрических диполей приводит к появлению еще одного электрического поля с напряженностью Едi, которая направлена против напряженности внешнего поля Е. В таком диэлектрике общая напряженность Е становится меньше напряженности внешнего поля Е.

Вследствие поворота молекул на одной поверхности диэлектрика появляются преимущественно отрицательные заряды диполей, а на другой – положительные (см. рис. 11). Такие заряды называются связанные.

Внутри диэлектрика отрицательные и положительные заряды диполей компенсируют друг друга и средний электрический заряд диэлектрика равен нулю.

  • Такой механизм поляризации называется ориентационным.
  • Полная ориентация диполей (состояние насыщения) может быть достигнута лишь в сильных полях при температурах, близких к абсолютному нулю.
  • Для насыщение при комнатных температурах необходимы поля напряженностью 10 10 – 10 12 В/м. Но чаще всего, даже при значительно меньших напряженностях, наступает пробой диэлектрика.

У полярных диэлектриков, наряду с ориентационной поляризацией, наблюдается и электронная поляризация. Однако эффект ориентации диполей на несколько порядков превосходит эффект смещения зарядов, поэтому последним часто пренебрегают.

Напряженность поля $bar$ в диэлектрике равна векторной сумме напряженностей полей, создаваемых свободными зарядами $bar_0$ и связанными (поляризационными зарядами) $bar_p$:

В том случае, если вещество, которое окружает свободные заряды однородный и изотропный диэлектрик, то напряженность $bar$ равна:

где $varepsilon$ – относительная диэлектрическая проницаемость вещества в исследуемой точке поля. Выражение (5) обозначает то, что при заданном распределении зарядов напряженность электростатического поля в однородном изотропном диэлектрике меньше, чем в вакууме в $varepsilon$ раз.

Техника высоких напряжений — Механизмы электропроводности диэлектрических жидкостей

Транспортировка заряда в диэлектрических жидкостях происходит в основном за счет движения положительных и отрицательных ионов, возникающих в результате диссоциации примесей или продуктов распада жидкости при ее старении, а также наличия электронов, влиянием которых при не слишком высоких напряженностях поля можно пренебречь [8.8, 8.9]. Причиной этого является быстрая рекомбинация появившихся свободных электронов с положительными ионами или прилипание к молекулам и образование отрицательных ионов [8.10]. Поэтому плотность свободных электронов пренебрежимо мала. К ионной проводимости добавляется электрофоретическая, если жидкость содержит примеси в виде суспензии или эмульсии. Частицы этих примесей могут получать заряд от окружающей среды и участвовать в переносе заряда.
Плотность тока J в постоянном поле зависит от заряда q, концентрации п и средней подвижности носителей заряда, а также от напряженности поля Е. Можно записать следующее уравнение: J=qnbE. (8.6)
Если справедлив закон Ома, т. е. отсутствуют насыщение и ионизационные процессы, электропроводность
e=qnb. (8.7)

Подвижность зависит как от значения заряда q, так и от радиуса r носителя зарядов (ионов) и обратно пропорциональна вязкости жидкости, т. е.

(8.8)
где η — вязкость жидкости.
Характерной особенностью жидких диэлектриков является то, что при постоянном напряжении их электропроводность со временем снижается. Приблизительно эту зависимость (рис. 8.5) можно разбить на четыре области.
В области А ток уменьшается вследствие ориентации диполей. Область Б характеризуется движением свободных носителей зарядов в электрическом поле к электродам. Электропроводность в этой области обозначается фактической электропроводностью, так как соответствует измеренной при 50 Гц (см. 8.1.2.4).
Снижение тока в области В объясняется обеднением концентрации быстрых носителей зарядов и образованием объемных зарядов у электродов. В области Г наблюдается стационарный ток, обусловленный непрерывным возникновением ионов за счет диссоциации.
Вследствие температурных зависимостей концентрации носителей заряда и вязкости электропроводность меняется при изменении температуры по закону Ван Гоффа
(8.9)
где k — постоянная Больцмана; Т — абсолютная температура; σο, F— постоянные вещества.
Коэффициент F характеризует энергию активации подвижности носителей зарядов и процессов диссоциации за счет электролитических примесей. Точное разделение влияния подвижности носителей зарядов и их количества на электропроводность изоляционных масел провести, как правило, невозможно.

Рис. 8.5 Электропроводность σ при постоянном напряжении изоляционного масла в зависимости от времени воздействия напряжения [8.11]


Рис. 8.6. Зависимость плотности тока / изоляционной жидкости от напряженности поля Е:
I — линейная область, где справедлив закон Ома; // — область, в которой резко увеличивается плотность тока

Рис. 8.7. Удельное сопротивление р минерального масла при температуре 40 °C в зависимости от содержания воды w
Закон Ван Гоффа справедлив в предположении, что выполняется закон Ома, т. е. отсутствуют насыщение и ионизационные явления. Это предположение о линейной связи плотности тока с напряженностью поля справедливо только до определенных значений напряженностей, зависящих от рода жидкости и наличия примесей. Если напряженность превышает некоторое граничное значение напряженности, то плотность тока начинает быстро возрастать (рис. 8.6).

Такое резкое возрастание плотности тока связано с увеличением концентрации носителей зарядов и начинается при тем меньшей напряженности, чем выше температура жидкости. Для сухого трансформаторного масла при температуре 20 °C оно наблюдается при Е=20 кВ/см, а при температуре 70°C — при Е—8 кВ/см (см. также 8.1.2.4, рис. 8.14). Для конденсаторных изоляционных жидкостей, например для синтетической жидкости финилксилилэтан, при температуре 60 °C начинается быстрый рост тока, а следовательно, и tg δ при Е=50 кВ/см. Поэтому жидкую изоляцию можно рассматривать как слабый электролит, в котором увеличение напряженности поля приводит к образованию новых носителей зарядов за счет диссоциации (эффект Вина [8.12]). К этому процессу добавляется ток, вызванный инжекцией электронов с катода. Процесс инжекции облегчается высокой напряженностью поля у катода, возникающей за счет наложения основного поля и поля положительного объемного заряда [8.10].
Как уже упоминалось, перенос заряда осуществляется в основном благодаря движению ионов, образованных диссоциацией примесей и продуктов распада жидкости при ее старении. Примеси в изоляционном масле, влияющие на электропроводность, могут быть самые разнообразные. Обычно всегда имеются газообразные компоненты и пары воды.

Читайте так же:
Розетки 10а или 16а

Влияние растворенных газов на электропроводность, а следовательно, на сопротивление утечки не обнаруживается, в то время как сопротивление утечки жидкой изоляции при малом содержании влаги изменяется незначительно, а при большом — весьма существенно (рис. 8.7).

Тангенс угла диэлектрических потерь и диэлектрическая проницаемость.

Свойства диэлектрика определяются тангенсом угла диэлектрических потерь и диэлектрической проницаемостью. Их значения и зависимости от температуры, частоты и напряжения являются определяющими при использовании того или иного материала, а также служат критерием качества, степени чистоты материала и его состояния в процессе старения.

Основные понятия, определения и схемы замещения изоляции.

Изоляция представляет собой емкость с потерями, а ее характеристики определяются диэлектрической проницаемостью и удельным сопротивлением.
Относительная диэлектрическая проницаемость изоляционного материала определяется как отношение емкости конденсатора, диэлектриком которого является рассматриваемый материал, к емкости того же конденсатора, диэлектрик которого заменен вакуумом:

Электрическая постоянная ε0 равна диэлектрической проницаемости вакуума, т. е.

Рис. 8.8. К определению tg δ

Тангенс угла диэлектрических потерь определяется как отношение активной Ра и реактивной Рр мощностей при приложении к конденсатору напряжения U:

при этом для изоляции с потерями можно использовать схему с параллельным соединением Р и комплексной емкости С, для которой и рассчитывается tg δ.
Ток через изоляцию в комплексной форме

Таким образом, tgδ складывается из двух составляющих, причем tgδl характеризует потери за счет проводимости (преимущественно ионной), a tgδp — за счет переполяризации молекул диэлектрика.

8.1.2.4. Механизмы электропроводности и поляризации.

Ионная проводимость. Электропроводность за счет движения носителей зарядов (ионная проводимость) при не очень высоких частотах принципиально имеет тот же механизм, что и при постоянном напряжении (см. 8.1.2.1), — перемещение свободных носителей под действием электрического поля. По причинам, указанным в 8.1.2.1, эти процессы в жидкости называют ионной проводимостью. Однако было бы более правильным называть рассматриваемые процессы проводимостью за счет движения носителей заряда, так как при высоких напряженностях ионная проводимость перекрывается током, обусловленным электронными процессами (эффект Вина).
Независимо от рода носителей зарядов электропроводность при переменном напряжении связана с их смещением в переменном поле, а ее значение при 50 Гц совпадает со значением электропроводности спустя 10-2 с после приложения постоянного напряжения (см. рис. 8.5). Поэтому согласно (8.7)
σ

=qnb, т. е. электропроводность определяется зарядом, концентрацией и подвижностью участвующих в переносе частиц и поэтому в диапазоне от одного до нескольких сотен герц не зависит от частоты. Отсюда следует, что для заданного устройства с жидкой изоляцией существует конечное сопротивление R, которое в соответствии

Поляризационные потери. Наряду с потерями за счет проводимости в жидких изоляционных материалах имеют место дополнительные потери при переменном напряжении, учтенные в (8.18) членомЭти так называемые поляризационные потери могут вызываться следующими механизмами.
Отдельные молекулы или атомы в составе молекул колеблются в такт с приложенным напряжением. Аналогичные колебания иногда возникают между ядром и электронной оболочкой, в этом случае речь идет о неполярном веществе. Описанный механизм поляризационных потерь называется деформационной поляризацией.
Другим механизмом потерь является поляризация на граничных поверхностях. В неоднородной, например, частично кристаллизованной среде на границах участков с различными свойствами накапливаются заряды, которые в такт с приложенным напряжением изменяют свой знак. Однако, учитывая структуру жидкостей, этот вид поляризации маловероятен.
Наконец, существует ориентационная поляризация. Она наступает тогда, когда изоляционный материал содержит перманентные диполи. Под перманентными диполями имеются в виду такие молекулы, центры положительных и отрицательных зарядов которых не совпадают. При наложении электрического поля диполи в такт с изменением напряжения в большей или меньшей степени выстраиваются по направлению поля.
В жидкостях доминирующим механизмом является ориентационная поляризация. В соответствии с (8.18) частотная зависимость поляризационных потерь определяется комплексной проницаемостьюкоторая связана с частотой ω уравнением Дебая [8.14]:

ИЛИ
(8.23) где τ — время релаксации соответствующего механизма поляризации; εст — реальная часть комплексной проницаемости в пределах частот вплоть до релаксационной частоты (статическая проницаемость); εr∞ — реальная часть комплексной проницаемости при частотах, существенно больших, чем частота релаксации.
Отсюда получается зависимость tgδp от частоты в виде
(8.24)
В результате можно построить зависимости tgδp, реальной и мнимой составляющих проницаемости от частоты (рис. 8.10).

В соответствии с описанным в 8.1.2.1 эффектом Вина tg δ растет е увеличением напряженности поля, если она превышает некоторую граничную напряженность, в пределах которой еще соблюдается закон Ома. На рис. 8.14,в представлены экспериментальные зависимости tg δ трансформаторного масла от Е. Измерительное устройство в этих экспериментах было выполнено таким образом, чтобы до напряженностей 200 кВ/см не возникало частичных разрядов (чувствительность устройства 0,1 пКл), способных исказить результаты. Очевидно, что повышение как температуры, так и содержания влаги приводит к возрастанию tg δ при меньших напряженностях поля.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector